libdivecomputer/src/cressi_leonardo.c
Jef Driesen cde70334b0 Initialize the fingerprint before use.
The fingerprint is used unconditionally, regardless of whether it's
explicitly set by the application or not. Therefore it needs to be
initialized properly.
2014-08-26 22:07:59 +02:00

390 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2013 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy, memcmp
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include <libdivecomputer/cressi_leonardo.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "array.h"
#include "ringbuffer.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &cressi_leonardo_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define SZ_MEMORY 32000
#define RB_LOGBOOK_BEGIN 0x0100
#define RB_LOGBOOK_END 0x1438
#define RB_LOGBOOK_SIZE 0x52
#define RB_LOGBOOK_COUNT ((RB_LOGBOOK_END - RB_LOGBOOK_BEGIN) / RB_LOGBOOK_SIZE)
#define RB_PROFILE_BEGIN 0x1438
#define RB_PROFILE_END SZ_MEMORY
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END)
typedef struct cressi_leonardo_device_t {
dc_device_t base;
serial_t *port;
unsigned char fingerprint[5];
} cressi_leonardo_device_t;
static dc_status_t cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t cressi_leonardo_device_close (dc_device_t *abstract);
static const dc_device_vtable_t cressi_leonardo_device_vtable = {
DC_FAMILY_CRESSI_LEONARDO,
cressi_leonardo_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
cressi_leonardo_device_dump, /* dump */
cressi_leonardo_device_foreach, /* foreach */
cressi_leonardo_device_close /* close */
};
dc_status_t
cressi_leonardo_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) malloc (sizeof (cressi_leonardo_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &cressi_leonardo_device_vtable);
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (115200 8N1).
rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (1000 ms).
if (serial_set_timeout (device->port, 1000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Clear the DTR and set the RTS line.
if (serial_set_dtr (device->port, 0) == -1 ||
serial_set_rts (device->port, 1) == -1) {
ERROR (context, "Failed to set the DTR/RTS line.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
serial_sleep (device->port, 100);
serial_flush (device->port, SERIAL_QUEUE_BOTH);
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_close (dc_device_t *abstract)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
// Erase the current contents of the buffer and
// pre-allocate the required amount of memory.
if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_MEMORY;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Send the command header to the dive computer.
const unsigned char command[] = {0x7B, 0x31, 0x32, 0x33, 0x44, 0x42, 0x41, 0x7d};
int n = serial_write (device->port, command, sizeof (command));
if (n != sizeof (command)) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
// Receive the header packet.
unsigned char header[7] = {0};
n = serial_read (device->port, header, sizeof (header));
if (n != sizeof (header)) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the header packet.
const unsigned char expected[] = {0x7B, 0x21, 0x44, 0x35, 0x42, 0x33, 0x7d};
if (memcmp (header, expected, sizeof (expected)) != 0) {
ERROR (abstract->context, "Unexpected answer byte.");
return DC_STATUS_PROTOCOL;
}
unsigned char *data = dc_buffer_get_data (buffer);
unsigned int nbytes = 0;
while (nbytes < SZ_MEMORY) {
// Set the minimum packet size.
unsigned int len = 1024;
// Increase the packet size if more data is immediately available.
int available = serial_get_received (device->port);
if (available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > SZ_MEMORY)
len = SZ_MEMORY - nbytes;
// Read the packet.
n = serial_read (device->port, data + nbytes, len);
if (n != len) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Update and emit a progress event.
progress.current += len;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
nbytes += len;
}
// Receive the trailer packet.
unsigned char trailer[4] = {0};
n = serial_read (device->port, trailer, sizeof (trailer));
if (n != sizeof (trailer)) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Convert to a binary checksum.
unsigned char checksum[2] = {0};
array_convert_hex2bin (trailer, sizeof (trailer), checksum, sizeof (checksum));
// Verify the checksum.
unsigned int csum1 = array_uint16_be (checksum);
unsigned int csum2 = checksum_crc_ccitt_uint16 (data, SZ_MEMORY);
if (csum1 != csum2) {
ERROR (abstract->context, "Unexpected answer bytes.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = cressi_leonardo_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = data[0];
devinfo.firmware = 0;
devinfo.serial = array_uint24_le (data + 1);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = cressi_leonardo_extract_dives (abstract, dc_buffer_get_data (buffer),
dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
dc_status_t
cressi_leonardo_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
// Locate the most recent dive.
// The device maintains an internal counter which is incremented for every
// dive, and the current value at the time of the dive is stored in the
// dive header. Thus the most recent dive will have the highest value.
unsigned int count = 0;
unsigned int latest = 0;
unsigned int maximum = 0;
for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) {
unsigned int offset = RB_LOGBOOK_BEGIN + i * RB_LOGBOOK_SIZE;
// Ignore uninitialized header entries.
if (array_isequal (data + offset, RB_LOGBOOK_SIZE, 0xFF))
break;
// Get the internal dive number.
unsigned int current = array_uint16_le (data + offset);
if (current == 0xFFFF) {
WARNING (context, "Unexpected internal dive number found.");
break;
}
if (current > maximum) {
maximum = current;
latest = i;
}
count++;
}
unsigned char *buffer = (unsigned char *) malloc (RB_LOGBOOK_SIZE + RB_PROFILE_END - RB_PROFILE_BEGIN);
if (buffer == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
for (unsigned int i = 0; i < count; ++i) {
unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT;
unsigned int offset = RB_LOGBOOK_BEGIN + idx * RB_LOGBOOK_SIZE;
// Get the ringbuffer pointers.
unsigned int header = array_uint16_le (data + offset + 2);
unsigned int footer = array_uint16_le (data + offset + 4);
if (header < RB_PROFILE_BEGIN || header + 2 > RB_PROFILE_END ||
footer < RB_PROFILE_BEGIN || footer + 2 > RB_PROFILE_END)
{
ERROR (context, "Invalid ringbuffer pointer detected.");
free (buffer);
return DC_STATUS_DATAFORMAT;
}
// Get the same pointers from the profile.
unsigned int header2 = array_uint16_le (data + footer);
unsigned int footer2 = array_uint16_le (data + header);
if (header2 != header || footer2 != footer) {
ERROR (context, "Invalid ringbuffer pointer detected.");
free (buffer);
return DC_STATUS_DATAFORMAT;
}
// Calculate the profile address and length.
unsigned int address = header + 2;
unsigned int length = RB_PROFILE_DISTANCE (header, footer) - 2;
// Check the fingerprint data.
if (device && memcmp (data + offset + 8, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
// Copy the logbook entry.
memcpy (buffer, data + offset, RB_LOGBOOK_SIZE);
// Copy the profile data.
if (address + length > RB_PROFILE_END) {
unsigned int len_a = RB_PROFILE_END - address;
unsigned int len_b = length - len_a;
memcpy (buffer + RB_LOGBOOK_SIZE, data + address, len_a);
memcpy (buffer + RB_LOGBOOK_SIZE + len_a, data + RB_PROFILE_BEGIN, len_b);
} else {
memcpy (buffer + RB_LOGBOOK_SIZE, data + address, length);
}
if (callback && !callback (buffer, RB_LOGBOOK_SIZE + length, buffer + 8, sizeof (device->fingerprint), userdata)) {
break;
}
}
free (buffer);
return DC_STATUS_SUCCESS;
}