/* * libdivecomputer * * Copyright (C) 2013 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include // memcpy, memcmp #include // malloc, free #include // assert #include #include "context-private.h" #include "device-private.h" #include "serial.h" #include "checksum.h" #include "array.h" #include "ringbuffer.h" #define ISINSTANCE(device) dc_device_isinstance((device), &cressi_leonardo_device_vtable) #define EXITCODE(rc) \ ( \ rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \ ) #define SZ_MEMORY 32000 #define RB_LOGBOOK_BEGIN 0x0100 #define RB_LOGBOOK_END 0x1438 #define RB_LOGBOOK_SIZE 0x52 #define RB_LOGBOOK_COUNT ((RB_LOGBOOK_END - RB_LOGBOOK_BEGIN) / RB_LOGBOOK_SIZE) #define RB_PROFILE_BEGIN 0x1438 #define RB_PROFILE_END SZ_MEMORY #define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END) typedef struct cressi_leonardo_device_t { dc_device_t base; serial_t *port; unsigned char fingerprint[5]; } cressi_leonardo_device_t; static dc_status_t cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size); static dc_status_t cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer); static dc_status_t cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata); static dc_status_t cressi_leonardo_device_close (dc_device_t *abstract); static const dc_device_vtable_t cressi_leonardo_device_vtable = { DC_FAMILY_CRESSI_LEONARDO, cressi_leonardo_device_set_fingerprint, /* set_fingerprint */ NULL, /* read */ NULL, /* write */ cressi_leonardo_device_dump, /* dump */ cressi_leonardo_device_foreach, /* foreach */ cressi_leonardo_device_close /* close */ }; dc_status_t cressi_leonardo_device_open (dc_device_t **out, dc_context_t *context, const char *name) { if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) malloc (sizeof (cressi_leonardo_device_t)); if (device == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Initialize the base class. device_init (&device->base, context, &cressi_leonardo_device_vtable); // Set the default values. device->port = NULL; memset (device->fingerprint, 0, sizeof (device->fingerprint)); // Open the device. int rc = serial_open (&device->port, context, name); if (rc == -1) { ERROR (context, "Failed to open the serial port."); free (device); return DC_STATUS_IO; } // Set the serial communication protocol (115200 8N1). rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE); if (rc == -1) { ERROR (context, "Failed to set the terminal attributes."); serial_close (device->port); free (device); return DC_STATUS_IO; } // Set the timeout for receiving data (1000 ms). if (serial_set_timeout (device->port, 1000) == -1) { ERROR (context, "Failed to set the timeout."); serial_close (device->port); free (device); return DC_STATUS_IO; } // Clear the DTR and set the RTS line. if (serial_set_dtr (device->port, 0) == -1 || serial_set_rts (device->port, 1) == -1) { ERROR (context, "Failed to set the DTR/RTS line."); serial_close (device->port); free (device); return DC_STATUS_IO; } serial_sleep (device->port, 100); serial_flush (device->port, SERIAL_QUEUE_BOTH); *out = (dc_device_t *) device; return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_device_close (dc_device_t *abstract) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; // Close the device. if (serial_close (device->port) == -1) { free (device); return DC_STATUS_IO; } // Free memory. free (device); return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; if (size && size != sizeof (device->fingerprint)) return DC_STATUS_INVALIDARGS; if (size) memcpy (device->fingerprint, data, sizeof (device->fingerprint)); else memset (device->fingerprint, 0, sizeof (device->fingerprint)); return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; // Erase the current contents of the buffer and // pre-allocate the required amount of memory. if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, SZ_MEMORY)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; progress.maximum = SZ_MEMORY; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Send the command header to the dive computer. const unsigned char command[] = {0x7B, 0x31, 0x32, 0x33, 0x44, 0x42, 0x41, 0x7d}; int n = serial_write (device->port, command, sizeof (command)); if (n != sizeof (command)) { ERROR (abstract->context, "Failed to send the command."); return EXITCODE (n); } // Receive the header packet. unsigned char header[7] = {0}; n = serial_read (device->port, header, sizeof (header)); if (n != sizeof (header)) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } // Verify the header packet. const unsigned char expected[] = {0x7B, 0x21, 0x44, 0x35, 0x42, 0x33, 0x7d}; if (memcmp (header, expected, sizeof (expected)) != 0) { ERROR (abstract->context, "Unexpected answer byte."); return DC_STATUS_PROTOCOL; } unsigned char *data = dc_buffer_get_data (buffer); unsigned int nbytes = 0; while (nbytes < SZ_MEMORY) { // Set the minimum packet size. unsigned int len = 1024; // Increase the packet size if more data is immediately available. int available = serial_get_received (device->port); if (available > len) len = available; // Limit the packet size to the total size. if (nbytes + len > SZ_MEMORY) len = SZ_MEMORY - nbytes; // Read the packet. n = serial_read (device->port, data + nbytes, len); if (n != len) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } // Update and emit a progress event. progress.current += len; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); nbytes += len; } // Receive the trailer packet. unsigned char trailer[4] = {0}; n = serial_read (device->port, trailer, sizeof (trailer)); if (n != sizeof (trailer)) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } // Convert to a binary checksum. unsigned char checksum[2] = {0}; array_convert_hex2bin (trailer, sizeof (trailer), checksum, sizeof (checksum)); // Verify the checksum. unsigned int csum1 = array_uint16_be (checksum); unsigned int csum2 = checksum_crc_ccitt_uint16 (data, SZ_MEMORY); if (csum1 != csum2) { ERROR (abstract->context, "Unexpected answer bytes."); return DC_STATUS_PROTOCOL; } return DC_STATUS_SUCCESS; } static dc_status_t cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata) { dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY); if (buffer == NULL) return DC_STATUS_NOMEMORY; dc_status_t rc = cressi_leonardo_device_dump (abstract, buffer); if (rc != DC_STATUS_SUCCESS) { dc_buffer_free (buffer); return rc; } unsigned char *data = dc_buffer_get_data (buffer); dc_event_devinfo_t devinfo; devinfo.model = data[0]; devinfo.firmware = 0; devinfo.serial = array_uint24_le (data + 1); device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo); rc = cressi_leonardo_extract_dives (abstract, dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata); dc_buffer_free (buffer); return rc; } dc_status_t cressi_leonardo_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (size < SZ_MEMORY) return DC_STATUS_DATAFORMAT; // Locate the most recent dive. // The device maintains an internal counter which is incremented for every // dive, and the current value at the time of the dive is stored in the // dive header. Thus the most recent dive will have the highest value. unsigned int count = 0; unsigned int latest = 0; unsigned int maximum = 0; for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) { unsigned int offset = RB_LOGBOOK_BEGIN + i * RB_LOGBOOK_SIZE; // Ignore uninitialized header entries. if (array_isequal (data + offset, RB_LOGBOOK_SIZE, 0xFF)) break; // Get the internal dive number. unsigned int current = array_uint16_le (data + offset); if (current == 0xFFFF) { WARNING (context, "Unexpected internal dive number found."); break; } if (current > maximum) { maximum = current; latest = i; } count++; } unsigned char *buffer = (unsigned char *) malloc (RB_LOGBOOK_SIZE + RB_PROFILE_END - RB_PROFILE_BEGIN); if (buffer == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } for (unsigned int i = 0; i < count; ++i) { unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT; unsigned int offset = RB_LOGBOOK_BEGIN + idx * RB_LOGBOOK_SIZE; // Get the ringbuffer pointers. unsigned int header = array_uint16_le (data + offset + 2); unsigned int footer = array_uint16_le (data + offset + 4); if (header < RB_PROFILE_BEGIN || header + 2 > RB_PROFILE_END || footer < RB_PROFILE_BEGIN || footer + 2 > RB_PROFILE_END) { ERROR (context, "Invalid ringbuffer pointer detected."); free (buffer); return DC_STATUS_DATAFORMAT; } // Get the same pointers from the profile. unsigned int header2 = array_uint16_le (data + footer); unsigned int footer2 = array_uint16_le (data + header); if (header2 != header || footer2 != footer) { ERROR (context, "Invalid ringbuffer pointer detected."); free (buffer); return DC_STATUS_DATAFORMAT; } // Calculate the profile address and length. unsigned int address = header + 2; unsigned int length = RB_PROFILE_DISTANCE (header, footer) - 2; // Check the fingerprint data. if (device && memcmp (data + offset + 8, device->fingerprint, sizeof (device->fingerprint)) == 0) break; // Copy the logbook entry. memcpy (buffer, data + offset, RB_LOGBOOK_SIZE); // Copy the profile data. if (address + length > RB_PROFILE_END) { unsigned int len_a = RB_PROFILE_END - address; unsigned int len_b = length - len_a; memcpy (buffer + RB_LOGBOOK_SIZE, data + address, len_a); memcpy (buffer + RB_LOGBOOK_SIZE + len_a, data + RB_PROFILE_BEGIN, len_b); } else { memcpy (buffer + RB_LOGBOOK_SIZE, data + address, length); } if (callback && !callback (buffer, RB_LOGBOOK_SIZE + length, buffer + 8, sizeof (device->fingerprint), userdata)) { break; } } free (buffer); return DC_STATUS_SUCCESS; }