libdivecomputer/src/uwatec_smart.c
Jef Driesen 6419e189a4 Add a single isinstance function per object type.
Currently, each backend has it's own function to verify whether the
object vtable pointer is the expected one. All these functions can be
removed in favor of a single isintance function in the base class,
which takes the expected vtable pointer as a parameter.

Functions which are called through the vtable, don't need to verify the
vtable pointer, and those checks are removed.
2013-04-16 12:18:54 +02:00

441 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc, free
#include <string.h> // strncmp, strstr
#include <libdivecomputer/uwatec_smart.h>
#include "context-private.h"
#include "device-private.h"
#include "irda.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &uwatec_smart_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
typedef struct uwatec_smart_device_t {
dc_device_t base;
irda_t *socket;
unsigned int address;
unsigned int timestamp;
unsigned int devtime;
dc_ticks_t systime;
} uwatec_smart_device_t;
static dc_status_t uwatec_smart_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size);
static dc_status_t uwatec_smart_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t uwatec_smart_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t uwatec_smart_device_close (dc_device_t *abstract);
static const dc_device_vtable_t uwatec_smart_device_vtable = {
DC_FAMILY_UWATEC_SMART,
uwatec_smart_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
uwatec_smart_device_dump, /* dump */
uwatec_smart_device_foreach, /* foreach */
uwatec_smart_device_close /* close */
};
static void
uwatec_smart_discovery (unsigned int address, const char *name, unsigned int charset, unsigned int hints, void *userdata)
{
uwatec_smart_device_t *device = (uwatec_smart_device_t*) userdata;
if (device == NULL)
return;
if (strncmp (name, "UWATEC Galileo Sol", 18) == 0 ||
strncmp (name, "Uwatec Smart", 12) == 0 ||
strstr (name, "Uwatec") != NULL ||
strstr (name, "UWATEC") != NULL ||
strstr (name, "Aladin") != NULL ||
strstr (name, "ALADIN") != NULL ||
strstr (name, "Smart") != NULL ||
strstr (name, "SMART") != NULL ||
strstr (name, "Galileo") != NULL ||
strstr (name, "GALILEO") != NULL)
{
device->address = address;
}
}
static dc_status_t
uwatec_smart_transfer (uwatec_smart_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize)
{
dc_device_t *abstract = (dc_device_t *) device;
int n = irda_socket_write (device->socket, command, csize);
if (n != csize) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
n = irda_socket_read (device->socket, answer, asize);
if (n != asize) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_handshake (uwatec_smart_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
// Command template.
unsigned char answer[1] = {0};
unsigned char command[5] = {0x00, 0x10, 0x27, 0, 0};
// Handshake (stage 1).
command[0] = 0x1B;
dc_status_t rc = uwatec_smart_transfer (device, command, 1, answer, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the answer.
if (answer[0] != 0x01) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
// Handshake (stage 2).
command[0] = 0x1C;
rc = uwatec_smart_transfer (device, command, 5, answer, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the answer.
if (answer[0] != 0x01) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
uwatec_smart_device_open (dc_device_t **out, dc_context_t *context)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
uwatec_smart_device_t *device = (uwatec_smart_device_t *) malloc (sizeof (uwatec_smart_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &uwatec_smart_device_vtable);
// Set the default values.
device->socket = NULL;
device->address = 0;
device->timestamp = 0;
device->systime = (dc_ticks_t) -1;
device->devtime = 0;
// Open the irda socket.
int rc = irda_socket_open (&device->socket, context);
if (rc == -1) {
ERROR (context, "Failed to open the irda socket.");
free (device);
return DC_STATUS_IO;
}
// Discover the device.
rc = irda_socket_discover (device->socket, uwatec_smart_discovery, device);
if (rc == -1) {
ERROR (context, "Failed to discover the device.");
irda_socket_close (device->socket);
free (device);
return DC_STATUS_IO;
}
if (device->address == 0) {
ERROR (context, "No dive computer found.");
irda_socket_close (device->socket);
free (device);
return DC_STATUS_IO;
}
// Connect the device.
rc = irda_socket_connect_lsap (device->socket, device->address, 1);
if (rc == -1) {
ERROR (context, "Failed to connect the device.");
irda_socket_close (device->socket);
free (device);
return DC_STATUS_IO;
}
// Perform the handshaking.
uwatec_smart_handshake (device);
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_device_close (dc_device_t *abstract)
{
uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract;
// Close the device.
if (irda_socket_close (device->socket) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract;
if (size && size != 4)
return DC_STATUS_INVALIDARGS;
if (size)
device->timestamp = array_uint32_le (data);
else
device->timestamp = 0;
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Erase the current contents of the buffer.
if (!dc_buffer_clear (buffer)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
// Command template.
unsigned char command[9] = {0x00,
(device->timestamp ) & 0xFF,
(device->timestamp >> 8 ) & 0xFF,
(device->timestamp >> 16) & 0xFF,
(device->timestamp >> 24) & 0xFF,
0x10,
0x27,
0,
0};
// Read the model number.
command[0] = 0x10;
unsigned char model[1] = {0};
rc = uwatec_smart_transfer (device, command, 1, model, sizeof (model));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the serial number.
command[0] = 0x14;
unsigned char serial[4] = {0};
rc = uwatec_smart_transfer (device, command, 1, serial, sizeof (serial));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the device clock.
command[0] = 0x1A;
unsigned char devtime[4] = {0};
rc = uwatec_smart_transfer (device, command, 1, devtime, sizeof (devtime));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Store the clock calibration values.
device->systime = dc_datetime_now ();
device->devtime = array_uint32_le (devtime);
// Update and emit a progress event.
progress.current += 9;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
// Emit a clock event.
dc_event_clock_t clock;
clock.systime = device->systime;
clock.devtime = device->devtime;
device_event_emit (&device->base, DC_EVENT_CLOCK, &clock);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = model[0];
devinfo.firmware = 0;
devinfo.serial = array_uint32_le (serial);
device_event_emit (&device->base, DC_EVENT_DEVINFO, &devinfo);
// Data Length.
command[0] = 0xC6;
unsigned char answer[4] = {0};
rc = uwatec_smart_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int length = array_uint32_le (answer);
// Update and emit a progress event.
progress.maximum = 4 + 9 + (length ? length + 4 : 0);
progress.current += 4;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
if (length == 0)
return DC_STATUS_SUCCESS;
// Allocate the required amount of memory.
if (!dc_buffer_resize (buffer, length)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
unsigned char *data = dc_buffer_get_data (buffer);
// Data.
command[0] = 0xC4;
rc = uwatec_smart_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int total = array_uint32_le (answer);
// Update and emit a progress event.
progress.current += 4;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
if (total != length + 4) {
ERROR (abstract->context, "Received an unexpected size.");
return DC_STATUS_PROTOCOL;
}
unsigned int nbytes = 0;
while (nbytes < length) {
// Set the minimum packet size.
unsigned int len = 32;
// Increase the packet size if more data is immediately available.
int available = irda_socket_available (device->socket);
if (available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > length)
len = length - nbytes;
int n = irda_socket_read (device->socket, data + nbytes, len);
if (n != len) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Update and emit a progress event.
progress.current += n;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
nbytes += n;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (0);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = uwatec_smart_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
rc = uwatec_smart_extract_dives (abstract,
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
dc_status_t
uwatec_smart_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
const unsigned char header[4] = {0xa5, 0xa5, 0x5a, 0x5a};
// Search the data stream for start markers.
unsigned int previous = size;
unsigned int current = (size >= 4 ? size - 4 : 0);
while (current > 0) {
current--;
if (memcmp (data + current, header, sizeof (header)) == 0) {
// Get the length of the profile data.
unsigned int len = array_uint32_le (data + current + 4);
// Check for a buffer overflow.
if (current + len > previous)
return DC_STATUS_DATAFORMAT;
if (callback && !callback (data + current, len, data + current + 8, 4, userdata))
return DC_STATUS_SUCCESS;
// Prepare for the next dive.
previous = current;
current = (current >= 4 ? current - 4 : 0);
}
}
return DC_STATUS_SUCCESS;
}