/* * libdivecomputer * * Copyright (C) 2008 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include // malloc, free #include // strncmp, strstr #include #include "context-private.h" #include "device-private.h" #include "irda.h" #include "array.h" #define ISINSTANCE(device) dc_device_isinstance((device), &uwatec_smart_device_vtable) #define EXITCODE(rc) \ ( \ rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \ ) typedef struct uwatec_smart_device_t { dc_device_t base; irda_t *socket; unsigned int address; unsigned int timestamp; unsigned int devtime; dc_ticks_t systime; } uwatec_smart_device_t; static dc_status_t uwatec_smart_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size); static dc_status_t uwatec_smart_device_dump (dc_device_t *abstract, dc_buffer_t *buffer); static dc_status_t uwatec_smart_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata); static dc_status_t uwatec_smart_device_close (dc_device_t *abstract); static const dc_device_vtable_t uwatec_smart_device_vtable = { DC_FAMILY_UWATEC_SMART, uwatec_smart_device_set_fingerprint, /* set_fingerprint */ NULL, /* read */ NULL, /* write */ uwatec_smart_device_dump, /* dump */ uwatec_smart_device_foreach, /* foreach */ uwatec_smart_device_close /* close */ }; static void uwatec_smart_discovery (unsigned int address, const char *name, unsigned int charset, unsigned int hints, void *userdata) { uwatec_smart_device_t *device = (uwatec_smart_device_t*) userdata; if (device == NULL) return; if (strncmp (name, "UWATEC Galileo Sol", 18) == 0 || strncmp (name, "Uwatec Smart", 12) == 0 || strstr (name, "Uwatec") != NULL || strstr (name, "UWATEC") != NULL || strstr (name, "Aladin") != NULL || strstr (name, "ALADIN") != NULL || strstr (name, "Smart") != NULL || strstr (name, "SMART") != NULL || strstr (name, "Galileo") != NULL || strstr (name, "GALILEO") != NULL) { device->address = address; } } static dc_status_t uwatec_smart_transfer (uwatec_smart_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize) { dc_device_t *abstract = (dc_device_t *) device; int n = irda_socket_write (device->socket, command, csize); if (n != csize) { ERROR (abstract->context, "Failed to send the command."); return EXITCODE (n); } n = irda_socket_read (device->socket, answer, asize); if (n != asize) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } return DC_STATUS_SUCCESS; } static dc_status_t uwatec_smart_handshake (uwatec_smart_device_t *device) { dc_device_t *abstract = (dc_device_t *) device; // Command template. unsigned char answer[1] = {0}; unsigned char command[5] = {0x00, 0x10, 0x27, 0, 0}; // Handshake (stage 1). command[0] = 0x1B; dc_status_t rc = uwatec_smart_transfer (device, command, 1, answer, 1); if (rc != DC_STATUS_SUCCESS) return rc; // Verify the answer. if (answer[0] != 0x01) { ERROR (abstract->context, "Unexpected answer byte(s)."); return DC_STATUS_PROTOCOL; } // Handshake (stage 2). command[0] = 0x1C; rc = uwatec_smart_transfer (device, command, 5, answer, 1); if (rc != DC_STATUS_SUCCESS) return rc; // Verify the answer. if (answer[0] != 0x01) { ERROR (abstract->context, "Unexpected answer byte(s)."); return DC_STATUS_PROTOCOL; } return DC_STATUS_SUCCESS; } dc_status_t uwatec_smart_device_open (dc_device_t **out, dc_context_t *context) { if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. uwatec_smart_device_t *device = (uwatec_smart_device_t *) malloc (sizeof (uwatec_smart_device_t)); if (device == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Initialize the base class. device_init (&device->base, context, &uwatec_smart_device_vtable); // Set the default values. device->socket = NULL; device->address = 0; device->timestamp = 0; device->systime = (dc_ticks_t) -1; device->devtime = 0; // Open the irda socket. int rc = irda_socket_open (&device->socket, context); if (rc == -1) { ERROR (context, "Failed to open the irda socket."); free (device); return DC_STATUS_IO; } // Discover the device. rc = irda_socket_discover (device->socket, uwatec_smart_discovery, device); if (rc == -1) { ERROR (context, "Failed to discover the device."); irda_socket_close (device->socket); free (device); return DC_STATUS_IO; } if (device->address == 0) { ERROR (context, "No dive computer found."); irda_socket_close (device->socket); free (device); return DC_STATUS_IO; } // Connect the device. rc = irda_socket_connect_lsap (device->socket, device->address, 1); if (rc == -1) { ERROR (context, "Failed to connect the device."); irda_socket_close (device->socket); free (device); return DC_STATUS_IO; } // Perform the handshaking. uwatec_smart_handshake (device); *out = (dc_device_t*) device; return DC_STATUS_SUCCESS; } static dc_status_t uwatec_smart_device_close (dc_device_t *abstract) { uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract; // Close the device. if (irda_socket_close (device->socket) == -1) { free (device); return DC_STATUS_IO; } // Free memory. free (device); return DC_STATUS_SUCCESS; } static dc_status_t uwatec_smart_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size) { uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract; if (size && size != 4) return DC_STATUS_INVALIDARGS; if (size) device->timestamp = array_uint32_le (data); else device->timestamp = 0; return DC_STATUS_SUCCESS; } static dc_status_t uwatec_smart_device_dump (dc_device_t *abstract, dc_buffer_t *buffer) { uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract; dc_status_t rc = DC_STATUS_SUCCESS; // Erase the current contents of the buffer. if (!dc_buffer_clear (buffer)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress); // Command template. unsigned char command[9] = {0x00, (device->timestamp ) & 0xFF, (device->timestamp >> 8 ) & 0xFF, (device->timestamp >> 16) & 0xFF, (device->timestamp >> 24) & 0xFF, 0x10, 0x27, 0, 0}; // Read the model number. command[0] = 0x10; unsigned char model[1] = {0}; rc = uwatec_smart_transfer (device, command, 1, model, sizeof (model)); if (rc != DC_STATUS_SUCCESS) return rc; // Read the serial number. command[0] = 0x14; unsigned char serial[4] = {0}; rc = uwatec_smart_transfer (device, command, 1, serial, sizeof (serial)); if (rc != DC_STATUS_SUCCESS) return rc; // Read the device clock. command[0] = 0x1A; unsigned char devtime[4] = {0}; rc = uwatec_smart_transfer (device, command, 1, devtime, sizeof (devtime)); if (rc != DC_STATUS_SUCCESS) return rc; // Store the clock calibration values. device->systime = dc_datetime_now (); device->devtime = array_uint32_le (devtime); // Update and emit a progress event. progress.current += 9; device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress); // Emit a clock event. dc_event_clock_t clock; clock.systime = device->systime; clock.devtime = device->devtime; device_event_emit (&device->base, DC_EVENT_CLOCK, &clock); // Emit a device info event. dc_event_devinfo_t devinfo; devinfo.model = model[0]; devinfo.firmware = 0; devinfo.serial = array_uint32_le (serial); device_event_emit (&device->base, DC_EVENT_DEVINFO, &devinfo); // Data Length. command[0] = 0xC6; unsigned char answer[4] = {0}; rc = uwatec_smart_transfer (device, command, sizeof (command), answer, sizeof (answer)); if (rc != DC_STATUS_SUCCESS) return rc; unsigned int length = array_uint32_le (answer); // Update and emit a progress event. progress.maximum = 4 + 9 + (length ? length + 4 : 0); progress.current += 4; device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress); if (length == 0) return DC_STATUS_SUCCESS; // Allocate the required amount of memory. if (!dc_buffer_resize (buffer, length)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } unsigned char *data = dc_buffer_get_data (buffer); // Data. command[0] = 0xC4; rc = uwatec_smart_transfer (device, command, sizeof (command), answer, sizeof (answer)); if (rc != DC_STATUS_SUCCESS) return rc; unsigned int total = array_uint32_le (answer); // Update and emit a progress event. progress.current += 4; device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress); if (total != length + 4) { ERROR (abstract->context, "Received an unexpected size."); return DC_STATUS_PROTOCOL; } unsigned int nbytes = 0; while (nbytes < length) { // Set the minimum packet size. unsigned int len = 32; // Increase the packet size if more data is immediately available. int available = irda_socket_available (device->socket); if (available > len) len = available; // Limit the packet size to the total size. if (nbytes + len > length) len = length - nbytes; int n = irda_socket_read (device->socket, data + nbytes, len); if (n != len) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } // Update and emit a progress event. progress.current += n; device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress); nbytes += n; } return DC_STATUS_SUCCESS; } static dc_status_t uwatec_smart_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata) { dc_buffer_t *buffer = dc_buffer_new (0); if (buffer == NULL) return DC_STATUS_NOMEMORY; dc_status_t rc = uwatec_smart_device_dump (abstract, buffer); if (rc != DC_STATUS_SUCCESS) { dc_buffer_free (buffer); return rc; } rc = uwatec_smart_extract_dives (abstract, dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata); dc_buffer_free (buffer); return rc; } dc_status_t uwatec_smart_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; const unsigned char header[4] = {0xa5, 0xa5, 0x5a, 0x5a}; // Search the data stream for start markers. unsigned int previous = size; unsigned int current = (size >= 4 ? size - 4 : 0); while (current > 0) { current--; if (memcmp (data + current, header, sizeof (header)) == 0) { // Get the length of the profile data. unsigned int len = array_uint32_le (data + current + 4); // Check for a buffer overflow. if (current + len > previous) return DC_STATUS_DATAFORMAT; if (callback && !callback (data + current, len, data + current + 8, 4, userdata)) return DC_STATUS_SUCCESS; // Prepare for the next dive. previous = current; current = (current >= 4 ? current - 4 : 0); } } return DC_STATUS_SUCCESS; }