The new iX3M 2021 models (refered to as 'iX3M with Sequared Buttons' in
the Ratio support section) identify as iX5M in the Bluetooth name.
Reported-by: Damian Zaremba <damian@damianzaremba.co.uk>
Handling the SIGPIPE signal in a library is tricky, because installing a
signal handler does affects the entire application. But we can at least
try to avoid generating the SIGPIPE signal ourselves. On Linux, that
requires the use of the MSG_NOSIGNAL flag, and on Mac and BSD setting
the SO_NOSIGPIPE socket option.
Because the dive_count variable is decremented, it doesn't contain the
total number of dives, but the index of the last dive. A negative number
indicates no dives. The same result can be obtained by using the total
number of dives directly. That's not only more intuitive, but also fixes
a -Wsign-compare compiler warning.
Windows and unix use a diferent data type for representing socket file
descriptors (SOCKET vs int). This mismatch results in a compiler warning
when comparing to S_INVALID.
Allthough the input buffer size has type 'size_t', the return value of
the function has only type 'int'. Hence the function can't support input
buffers larger than INT_MAX.
This allows to fix a -Wsign-compare compiler warning: operand of ?:
changes signedness from ‘int’ to ‘size_t’ due to unsignedness of other
operand.
The hexadecimal value 0x80000000 is too large to be represented as a
signed 32bit integer. Therefore the default type for the constant is an
unsigned 32bit integer. This is a bit annoying because the timezone
field is actually defined as a signed integer, and thus comparisions
produce -Wsign-compare compiler warnings.
Fixed by switching to INT_MIN, which is the same underlying value but
interpreted as a signed integer.
Comparing signed and unsigned integer expressions can have unexpected
results because the signed integer will get promoted to an unsigned
integer. To avoid the warning, add an explicit cast to the unsigned
type, along with a check to catch negative values.
String literals have the type 'char[N]' by default. Allthough they are
not really 'const', modifying a string literal is undefined behaviour.
Therefore, to avoid mistakes, libdivecomputer uses the -Wwrite-strings
compiler option to change the default type to 'const char[N]'.
The cast that triggers the -Wcast-qual warning can be avoided by using a
character array instead of string literal.
The name of the RBT (Remaining Bottom Time) sample was taken from the
Uwatec dive computers. The actual definition depends on the dive
computer, but it usually corresponds to the air time remaining (with or
without some additional factors taken into account).
The Mares Horizon is a variant of the Mares Genius, with a few changes
to support SCR dives:
The dive header is slightly modified. There is an extra 8 byte field at
offset 0x18, which causes all later fields to have moved up with the
same amount. This difference is indicated in both the object minor
version (with a change from v0.0 to v0.1), and the logformat.
For the profile data, there is a new SDPT sample type which contains a
bit more information compared to the existing DPRS sample type. This
difference is indicated with a change in the object type (from 0 to 1).
The current implementation assumes a fixed order for the record types (a
DSTR record, a TISS record, zero or more DPRS/SDPT records with an AIRS
record every 4 sample, and finally a DEND record), and either only DPRS
or SDPT records but never a mixture of the two. If these assumptions
turns out to be incorrect, the implementation will need to be changed
significantly. Note that the assumption of the fixed order was already
present for the Genius.
Bluetooth support is currently disabled in the Horizon firmware, but
might be re-enabled in the future.
Since logbook entries with invalid ringbuffer pointers are considered a
fatal error, the download is aborted. The result is that any remaining
entries, located after the invalid entry, can't be downloaded at all.
This can be avoided by skipping the problematic entry instead of
aborting the download.
The Sherwood Sage appears to be very similar to the Aeris A300CS. For
the BLE communication the handshake fails and is disabled.
Reported-By: Nick Shore <support@mac-dive.com>
With just a single table, the version string matching not only becomes
simpler, but adding new layouts also requires no code changes anymore.
For devices that need different layouts depending on the firmware
version (e.g. Oceanic Atom 2.0 and Aeris Manta), the table may contain
multiple entries with the different firmware versions. The only
requirement is that the entry with the highest firmware version must be
listed first.
The patterns used for the version string have the firmware version
masked out because it varies. We can re-use those masks to extract the
firmware version.
The gauge and freedives have a slightly different data format compared
to scuba dives. The main difference is the size of the header and two
new sample types.
The logbook header has 5 bytes extra, which are not present in the dive
header. Those 5 extra bytes contain the dive mode, which is required for
parsing the dive data. Therefore, insert all 5 bytes again and update
the parser.
The remaining 4 bytes appear to be some 32 bit address. They are not
used for anything right now, but are preserved as well in case they are
needed in the future.
The memory buffer already supported appending and prepending data, but
not inserting data anywhere in the buffer. That's exactly what the new
function does. The free space is still maintained at either the start or
the end of the buffer.
The existing check accepts the number of array elements as a valid
index. That's clearly wrong for zero based indexing, and would result in
a buffer overflow.
At some point (possibly around v71 of their firmware), Shearwater implemented
PNF for the Petrel and Petrel 2. Those are of course not air integrated, and
apparently don't support adjustable sample rate, so the log data doesn't include
opening and closing record 5. Instead of failing when those aren't found, we
should simply only access those when they actually exist.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The original Mares Genius support was based on Mares Dive Organizer
2.25, which has a bug in the salinity parsing. The latest version 2.26
has this bug fixed.
Reported-by: Greg McLaughlin <gregm@somemore.com>
The McLean Extreme records a sample every 10 seconds instead of every 20
seconds. This resulted in dive durations that were twice as long as
expected.
Reported-by: David Carron <david_de_carron@hotmail.com>
In one of the Windows system header files, an "interface" macro is
defined as:
#define interface struct
This results in some very strange build errors when also including the
descriptor-private.h header file. That's because the dc_usb_params_t
struct has a member field named "interface":
typedef struct dc_usb_params_t {
unsigned int interface;
unsigned char endpoint_in;
unsigned char endpoint_out;
} dc_usb_params_t;
As a workaround, define the WIN32_LEAN_AND_MEAN macro before including
the windows.h header file. This excludes some less common Windows API
declarations, including the above one.
In commit 57f0ce6d7902117cfc4d0d6b401b516fc93ca488, an extra parameter
was added to the dc_descriptor_filter() function. But I only updated the
libusb code path and forgot to do the same for the hidapi variant.
Commit d1b865d192afc9efde337b5cff8a239366f15565 breaks the OSTC4
firmware upgrade because the OSTC4 expects to receive the service init
command and the service key all at once, before sending any response.
The hwOS firmware still reads the service init command one byte at a
time, and sends the echo immediately after each byte. But in the
meantime, the hwos firmware has also been optimized. The processing time
for an incoming byte is now always faster then the time it takes for the
next byte to physically arrive via the serial line between the USB/BT
chip and the processor. Thus, even without any buffering, sending all
bytes at once should no longer be a problem.
This partially reverts commit d1b865d192afc9efde337b5cff8a239366f15565.
Reported-by: Anton Lundin <glance@acc.umu.se>
Suggested-by: Ralph Lembcke <mail@ralph-lembcke.de>
There is no reason for libusb to ever return a negative number of bytes,
but due to the use of a signed integer, it's technically possible. And
because libdivecomputer returns an unsigned integer, such a negative
number would be reported as a very large size.
Replace the hardcoded libusb based code with the new USB I/O transport.
This enables the use of a custom I/O on platforms where libusb is not
available.
The USB communication is now also implemented as an I/O stream
transport. Unlike most I/O devices, USB communication supports multiple
interfaces and endpoints. This requires some some special care:
In the general case, autodetection isn't really possible without
additional knowledge. Hence the need for the filter parameters to pass
this kind of information.
The implementation assumes two bulk endpoints for the standard
read/write interface. Communication with the control endpoint is
supported through the new DC_IOCTL_USB_CONTROL_{READ,WRITE} ioctl's.
Replace the small helper function to retrieve the function pointer and
then call the function, with another helper function to call the filter
function directly. This way the function pointer doesn't need to be
exposed at all.