libdc/src/shearwater_predator_parser.c
Linus Torvalds eed75cb0be Clean up Shearwater string handling
And remove the nasty and disgusting transmitter data handling code that
Dirk added to work around his misunderstanding of the parsing code.

This code now collects the various states of the transmitter batteries
throughout a dive and reports the most meaningful summary in the end. It
also rewrites the rest of the string handling code to be architecturally
cleaner.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2017-07-09 14:36:05 -07:00

721 lines
20 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2012 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
#include <libdivecomputer/units.h>
#include "shearwater_predator.h"
#include "shearwater_petrel.h"
#include "shearwater_common.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) ( \
dc_parser_isinstance((parser), &shearwater_predator_parser_vtable) || \
dc_parser_isinstance((parser), &shearwater_petrel_parser_vtable))
#define SZ_BLOCK 0x80
#define SZ_SAMPLE_PREDATOR 0x10
#define SZ_SAMPLE_PETREL 0x20
#define GASSWITCH 0x01
#define PPO2_EXTERNAL 0x02
#define SETPOINT_HIGH 0x04
#define SC 0x08
#define OC 0x10
#define METRIC 0
#define IMPERIAL 1
#define NGASMIXES 10
#define MAXSTRINGS 32
typedef struct shearwater_predator_parser_t shearwater_predator_parser_t;
struct shearwater_predator_parser_t {
dc_parser_t base;
unsigned int model;
unsigned int samplesize;
// Cached fields.
unsigned int cached;
unsigned int headersize;
unsigned int footersize;
unsigned int ngasmixes;
unsigned int oxygen[NGASMIXES];
unsigned int helium[NGASMIXES];
double calibration[3];
unsigned int serial;
dc_divemode_t mode;
unsigned char logversion;
/* String fields */
dc_field_string_t strings[MAXSTRINGS];
};
static dc_status_t shearwater_predator_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t shearwater_predator_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t shearwater_predator_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t shearwater_predator_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t shearwater_predator_parser_vtable = {
sizeof(shearwater_predator_parser_t),
DC_FAMILY_SHEARWATER_PREDATOR,
shearwater_predator_parser_set_data, /* set_data */
shearwater_predator_parser_get_datetime, /* datetime */
shearwater_predator_parser_get_field, /* fields */
shearwater_predator_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
static const dc_parser_vtable_t shearwater_petrel_parser_vtable = {
sizeof(shearwater_predator_parser_t),
DC_FAMILY_SHEARWATER_PETREL,
shearwater_predator_parser_set_data, /* set_data */
shearwater_predator_parser_get_datetime, /* datetime */
shearwater_predator_parser_get_field, /* fields */
shearwater_predator_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
static unsigned int
shearwater_predator_find_gasmix (shearwater_predator_parser_t *parser, unsigned int o2, unsigned int he)
{
unsigned int i = 0;
while (i < parser->ngasmixes) {
if (o2 == parser->oxygen[i] && he == parser->helium[i])
break;
i++;
}
return i;
}
dc_status_t
shearwater_common_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model, unsigned int serial)
{
shearwater_predator_parser_t *parser = NULL;
const dc_parser_vtable_t *vtable = NULL;
unsigned int samplesize = 0;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
if (model != PREDATOR) {
vtable = &shearwater_petrel_parser_vtable;
samplesize = SZ_SAMPLE_PETREL;
} else {
vtable = &shearwater_predator_parser_vtable;
samplesize = SZ_SAMPLE_PREDATOR;
}
// Allocate memory.
parser = (shearwater_predator_parser_t *) dc_parser_allocate (context, vtable);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
parser->model = model;
parser->samplesize = samplesize;
parser->serial = serial;
// Set the default values.
parser->cached = 0;
parser->headersize = 0;
parser->footersize = 0;
parser->ngasmixes = 0;
for (unsigned int i = 0; i < NGASMIXES; ++i) {
parser->oxygen[i] = 0;
parser->helium[i] = 0;
}
parser->mode = DC_DIVEMODE_OC;
*out = (dc_parser_t *) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract;
// Reset the cache.
parser->cached = 0;
parser->headersize = 0;
parser->footersize = 0;
parser->ngasmixes = 0;
for (unsigned int i = 0; i < NGASMIXES; ++i) {
parser->oxygen[i] = 0;
parser->helium[i] = 0;
}
parser->mode = DC_DIVEMODE_OC;
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
if (size < 2 * SZ_BLOCK)
return DC_STATUS_DATAFORMAT;
unsigned int ticks = array_uint32_be (data + 12);
if (!dc_datetime_gmtime (datetime, ticks))
return DC_STATUS_DATAFORMAT;
return DC_STATUS_SUCCESS;
}
/*
* These string cache interfaces should be some generic
* library rather than copied for all the dive computers.
*
* This is just copied from the EON Steel code.
*/
static void
add_string(shearwater_predator_parser_t *parser, const char *desc, const char *value)
{
int i;
for (i = 0; i < MAXSTRINGS; i++) {
dc_field_string_t *str = parser->strings+i;
if (str->desc)
continue;
str->desc = desc;
str->value = strdup(value);
break;
}
}
static void
add_string_fmt(shearwater_predator_parser_t *parser, const char *desc, const char *fmt, ...)
{
char buffer[256];
va_list ap;
/*
* We ignore the return value from vsnprintf, and we
* always NUL-terminate the destination buffer ourselves.
*
* That way we don't have to worry about random bad legacy
* implementations.
*/
va_start(ap, fmt);
buffer[sizeof(buffer)-1] = 0;
(void) vsnprintf(buffer, sizeof(buffer)-1, fmt, ap);
va_end(ap);
return add_string(parser, desc, buffer);
}
// The Battery state is a big-endian word:
//
// ffff = not paired / no comms for 90 s
// fffe = no comms for 30 s
//
// Otherwise:
// - top four bits are battery state (0 - normal, 1 - critical, 2 - warning)
// - bottom 12 bits are pressure in 2 psi increments (0..8k psi)
//
// This returns the state as a bitmask (so you can see all states it had
// during the dive). Note that we currently do not report pairing and
// communication lapses. Todo?
static unsigned int
battery_state(const unsigned char *data)
{
unsigned int pressure = array_uint16_be(data);
unsigned int state;
if ((pressure & 0xFFF0) == 0xFFF0)
return 0;
state = pressure >> 12;
if (state > 2)
return 0;
return 1u << state;
}
// Show the battery state
//
// NOTE! Right now it only shows the most serious bit
// but the code is set up so that we could perhaps
// indicate that the battery is on the edge (ie it
// reported both "normal" _and_ "warning" during the
// dive - maybe that would be a "starting to warn")
//
// We could also report unpaired and comm errors.
static void
add_battery_info(shearwater_predator_parser_t *parser, const char *desc, unsigned int state)
{
if (state >= 1 && state <= 7) {
static const char *states[8] = {
"", // 000 - No state bits, not used
"normal", // 001 - only normal
"critical", // 010 - only critical
"critical", // 011 - both normal and critical
"warning", // 100 - only warning
"warning", // 101 - normal and warning
"critical", // 110 - warning and critical
"critical", // 111 - normal, warning and critical
};
add_string(parser, desc, states[state]);
}
}
static void
add_deco_model(shearwater_predator_parser_t *parser, const unsigned char *data)
{
switch (data[67]) {
case 0:
add_string_fmt(parser, "Deco model", "GF %u/%u", data[4], data[5]);
break;
case 1:
add_string_fmt(parser, "Deco model", "VPM-B +%u", data[68]);
break;
case 2:
add_string_fmt(parser, "Deco model", "VPM-B/GFS +%u %u%%", data[68], data[85]);
break;
default:
add_string_fmt(parser, "Deco model", "Unknown model %d", data[67]);
}
}
static void
add_battery_type(shearwater_predator_parser_t *parser, const unsigned char *data)
{
if (parser->logversion < 7)
return;
switch (data[120]) {
case 1:
add_string(parser, "Battery type", "1.5V Alkaline");
break;
case 2:
add_string(parser, "Battery type", "1.5V Lithium");
break;
case 3:
add_string(parser, "Battery type", "1.2V NiMH");
break;
case 4:
add_string(parser, "Battery type", "3.6V Saft");
break;
case 5:
add_string(parser, "Battery type", "3.7V Li-Ion");
break;
default:
add_string_fmt(parser, "Battery type", "unknown type %d", data[120]);
break;
}
}
static dc_status_t
shearwater_predator_parser_cache (shearwater_predator_parser_t *parser)
{
dc_parser_t *abstract = (dc_parser_t *) parser;
const unsigned char *data = parser->base.data;
unsigned int size = parser->base.size;
if (parser->cached) {
return DC_STATUS_SUCCESS;
}
unsigned int headersize = SZ_BLOCK;
unsigned int footersize = SZ_BLOCK;
if (size < headersize + footersize) {
ERROR (abstract->context, "Invalid data length.");
return DC_STATUS_DATAFORMAT;
}
// Log versions before 6 weren't reliably stored in the data, but
// 6 is also the oldest version that we assume in our code
parser->logversion = 6;
if (data[127] > 6)
parser->logversion = data[127];
INFO(abstract->context, "Shearwater log version %u\n", parser->logversion);
memset(parser->strings, 0, sizeof(parser->strings));
// Adjust the footersize for the final block.
if (parser->model > PREDATOR || array_uint16_be (data + size - footersize) == 0xFFFD) {
footersize += SZ_BLOCK;
if (size < headersize + footersize) {
ERROR (abstract->context, "Invalid data length.");
return DC_STATUS_DATAFORMAT;
}
}
// Default dive mode.
dc_divemode_t mode = DC_DIVEMODE_OC;
// Get the gas mixes.
unsigned int ngasmixes = 0;
unsigned int oxygen[NGASMIXES] = {0};
unsigned int helium[NGASMIXES] = {0};
unsigned int o2_previous = 0, he_previous = 0;
// Transmitter battery levels
unsigned int t1_battery = 0, t2_battery = 0;
unsigned int offset = headersize;
unsigned int length = size - footersize;
while (offset < length) {
// Ignore empty samples.
if (array_isequal (data + offset, parser->samplesize, 0x00)) {
offset += parser->samplesize;
continue;
}
// Status flags.
unsigned int status = data[offset + 11];
if ((status & OC) == 0) {
mode = DC_DIVEMODE_CC;
}
// Gaschange.
unsigned int o2 = data[offset + 7];
unsigned int he = data[offset + 8];
if (o2 != o2_previous || he != he_previous) {
// Find the gasmix in the list.
unsigned int idx = 0;
while (idx < ngasmixes) {
if (o2 == oxygen[idx] && he == helium[idx])
break;
idx++;
}
// Add it to list if not found.
if (idx >= ngasmixes) {
if (idx >= NGASMIXES) {
ERROR (abstract->context, "Maximum number of gas mixes reached.");
return DC_STATUS_NOMEMORY;
}
oxygen[idx] = o2;
helium[idx] = he;
ngasmixes = idx + 1;
}
o2_previous = o2;
he_previous = he;
}
// Transmitter battery levels
if (parser->logversion >= 7) {
// T1 at offset 27, T2 at offset 19
t1_battery |= battery_state(data + offset + 27);
t2_battery |= battery_state(data + offset + 19);
}
offset += parser->samplesize;
}
// Cache sensor calibration for later use
parser->calibration[0] = array_uint16_be(data + 87) / 100000.0;
parser->calibration[1] = array_uint16_be(data + 89) / 100000.0;
parser->calibration[2] = array_uint16_be(data + 91) / 100000.0;
// The Predator expects the mV output of the cells to be within 30mV
// to 70mV in 100% O2 at 1 atmosphere.
// If the calibration value is scaled with a factor 2.2, then the
// sensors lines up and matches the average.
if (parser->model == PREDATOR) {
for (size_t i = 0; i < 3; ++i) {
parser->calibration[i] *= 2.2;
}
}
// Cache the data for later use.
parser->headersize = headersize;
parser->footersize = footersize;
parser->ngasmixes = ngasmixes;
for (unsigned int i = 0; i < ngasmixes; ++i) {
parser->oxygen[i] = oxygen[i];
parser->helium[i] = helium[i];
}
parser->mode = mode;
add_string_fmt(parser, "Serial", "%08x", parser->serial);
add_string_fmt(parser, "FW Version", "%2x", data[19]);
add_deco_model(parser, data);
add_battery_type(parser, data);
add_string_fmt(parser, "Battery at end", "%.1f V", data[9] / 10.0);
add_battery_info(parser, "T1 battery", t1_battery);
add_battery_info(parser, "T2 battery", t2_battery);
parser->cached = 1;
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
// Cache the parser data.
dc_status_t rc = shearwater_predator_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Get the offset to the footer record.
unsigned int footer = size - parser->footersize;
// Get the unit system.
unsigned int units = data[8];
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_salinity_t *water = (dc_salinity_t *) value;
dc_field_string_t *string = (dc_field_string_t *) value;
unsigned int density = 0;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
*((unsigned int *) value) = array_uint16_be (data + footer + 6) * 60;
break;
case DC_FIELD_MAXDEPTH:
if (units == IMPERIAL)
*((double *) value) = array_uint16_be (data + footer + 4) * FEET;
else
*((double *) value) = array_uint16_be (data + footer + 4);
break;
case DC_FIELD_GASMIX_COUNT:
*((unsigned int *) value) = parser->ngasmixes;
break;
case DC_FIELD_GASMIX:
gasmix->oxygen = parser->oxygen[flags] / 100.0;
gasmix->helium = parser->helium[flags] / 100.0;
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_SALINITY:
density = array_uint16_be (data + 83);
if (density == 1000)
water->type = DC_WATER_FRESH;
else
water->type = DC_WATER_SALT;
water->density = density;
break;
case DC_FIELD_ATMOSPHERIC:
*((double *) value) = array_uint16_be (data + 47) / 1000.0;
break;
case DC_FIELD_DIVEMODE:
*((dc_divemode_t *) value) = parser->mode;
break;
case DC_FIELD_STRING:
if (flags < MAXSTRINGS) {
dc_field_string_t *p = parser->strings + flags;
if (p->desc) {
*string = *p;
break;
}
}
return DC_STATUS_UNSUPPORTED;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
// Cache the parser data.
dc_status_t rc = shearwater_predator_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Get the unit system.
unsigned int units = data[8];
// Previous gas mix.
unsigned int o2_previous = 0, he_previous = 0;
unsigned int time = 0;
unsigned int offset = parser->headersize;
unsigned int length = size - parser->footersize;
while (offset < length) {
dc_sample_value_t sample = {0};
// Ignore empty samples.
if (array_isequal (data + offset, parser->samplesize, 0x00)) {
offset += parser->samplesize;
continue;
}
// Time (seconds).
time += 10;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Depth (1/10 m or ft).
unsigned int depth = array_uint16_be (data + offset);
if (units == IMPERIAL)
sample.depth = depth * FEET / 10.0;
else
sample.depth = depth / 10.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Temperature (°C or °F).
int temperature = (signed char) data[offset + 13];
if (temperature < 0) {
// Fix negative temperatures.
temperature += 102;
if (temperature > 0) {
temperature = 0;
}
}
if (units == IMPERIAL)
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
else
sample.temperature = temperature;
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
// Status flags.
unsigned int status = data[offset + 11];
if ((status & OC) == 0) {
// PPO2
#ifdef SENSOR_AVERAGE
sample.ppo2 = data[offset + 6] / 100.0;
if (callback) callback (DC_SAMPLE_PPO2, sample, userdata);
#else
if ((status & PPO2_EXTERNAL) == 0) {
sample.ppo2 = data[offset + 12] * parser->calibration[0];
if (callback && (data[86] & 0x01)) callback (DC_SAMPLE_PPO2, sample, userdata);
sample.ppo2 = data[offset + 14] * parser->calibration[1];
if (callback && (data[86] & 0x02)) callback (DC_SAMPLE_PPO2, sample, userdata);
sample.ppo2 = data[offset + 15] * parser->calibration[2];
if (callback && (data[86] & 0x04)) callback (DC_SAMPLE_PPO2, sample, userdata);
}
#endif
// Setpoint
if (parser->model > PREDATOR) {
sample.setpoint = data[offset + 18] / 100.0;
} else {
if (status & SETPOINT_HIGH) {
sample.setpoint = data[18] / 100.0;
} else {
sample.setpoint = data[17] / 100.0;
}
}
if (callback) callback (DC_SAMPLE_SETPOINT, sample, userdata);
}
// CNS
if (parser->model > PREDATOR) {
sample.cns = data[offset + 22] / 100.0;
if (callback) callback (DC_SAMPLE_CNS, sample, userdata);
}
// Gaschange.
unsigned int o2 = data[offset + 7];
unsigned int he = data[offset + 8];
if (o2 != o2_previous || he != he_previous) {
unsigned int idx = shearwater_predator_find_gasmix (parser, o2, he);
if (idx >= parser->ngasmixes) {
ERROR (abstract->context, "Invalid gas mix.");
return DC_STATUS_DATAFORMAT;
}
sample.gasmix = idx;
if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata);
o2_previous = o2;
he_previous = he;
}
// Deco stop / NDL.
unsigned int decostop = array_uint16_be (data + offset + 2);
if (decostop) {
sample.deco.type = DC_DECO_DECOSTOP;
if (units == IMPERIAL)
sample.deco.depth = decostop * FEET;
else
sample.deco.depth = decostop;
} else {
sample.deco.type = DC_DECO_NDL;
sample.deco.depth = 0.0;
}
sample.deco.time = data[offset + 9] * 60;
if (callback) callback (DC_SAMPLE_DECO, sample, userdata);
// for logversion 7 and newer (introduced for Perdix AI)
// detect tank pressure
if (parser->logversion >= 7) {
// Pressure (2 psi).
// 0xFFFF is not paired / no coms for 90 seconds
// 0xFFFE no coms for 30 seconds
// top 4 bits battery level:
// 0 - normal, 1 - critical, 2 - warning
unsigned int pressure = array_uint16_be (data + offset + 27);
if ((pressure & 0xFFF0) != 0xFFF0) {
pressure &= 0x0FFF;
sample.pressure.tank = 0;
sample.pressure.value = pressure * 2 * PSI / BAR;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
}
pressure = array_uint16_be (data + offset + 19);
if ((pressure & 0xFFF0) != 0xFFF0) {
pressure &= 0x0FFF;
sample.pressure.tank = 1;
sample.pressure.value = pressure * 2 * PSI / BAR;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
}
// Gas time remaining in minutes
if (data[offset + 21] < 0xFBu) {
sample.rbt = data[offset + 21];
if (callback) callback (DC_SAMPLE_RBT, sample, userdata);
}
}
offset += parser->samplesize;
}
return DC_STATUS_SUCCESS;
}