/* * libdivecomputer * * Copyright (C) 2012 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #ifdef _MSC_VER #define snprintf _snprintf #endif #include #include "shearwater_predator.h" #include "shearwater_petrel.h" #include "shearwater_common.h" #include "context-private.h" #include "parser-private.h" #include "array.h" #define ISINSTANCE(parser) ( \ dc_parser_isinstance((parser), &shearwater_predator_parser_vtable) || \ dc_parser_isinstance((parser), &shearwater_petrel_parser_vtable)) #define SZ_BLOCK 0x80 #define SZ_SAMPLE_PREDATOR 0x10 #define SZ_SAMPLE_PETREL 0x20 #define GASSWITCH 0x01 #define PPO2_EXTERNAL 0x02 #define SETPOINT_HIGH 0x04 #define SC 0x08 #define OC 0x10 #define METRIC 0 #define IMPERIAL 1 #define NGASMIXES 10 #define MAXSTRINGS 32 typedef struct shearwater_predator_parser_t shearwater_predator_parser_t; struct shearwater_predator_parser_t { dc_parser_t base; unsigned int model; unsigned int samplesize; // Cached fields. unsigned int cached; unsigned int headersize; unsigned int footersize; unsigned int ngasmixes; unsigned int oxygen[NGASMIXES]; unsigned int helium[NGASMIXES]; double calibration[3]; unsigned int serial; dc_divemode_t mode; unsigned char logversion; /* String fields */ dc_field_string_t strings[MAXSTRINGS]; }; static dc_status_t shearwater_predator_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size); static dc_status_t shearwater_predator_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime); static dc_status_t shearwater_predator_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value); static dc_status_t shearwater_predator_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata); static const dc_parser_vtable_t shearwater_predator_parser_vtable = { sizeof(shearwater_predator_parser_t), DC_FAMILY_SHEARWATER_PREDATOR, shearwater_predator_parser_set_data, /* set_data */ shearwater_predator_parser_get_datetime, /* datetime */ shearwater_predator_parser_get_field, /* fields */ shearwater_predator_parser_samples_foreach, /* samples_foreach */ NULL /* destroy */ }; static const dc_parser_vtable_t shearwater_petrel_parser_vtable = { sizeof(shearwater_predator_parser_t), DC_FAMILY_SHEARWATER_PETREL, shearwater_predator_parser_set_data, /* set_data */ shearwater_predator_parser_get_datetime, /* datetime */ shearwater_predator_parser_get_field, /* fields */ shearwater_predator_parser_samples_foreach, /* samples_foreach */ NULL /* destroy */ }; static unsigned int shearwater_predator_find_gasmix (shearwater_predator_parser_t *parser, unsigned int o2, unsigned int he) { unsigned int i = 0; while (i < parser->ngasmixes) { if (o2 == parser->oxygen[i] && he == parser->helium[i]) break; i++; } return i; } dc_status_t shearwater_common_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model, unsigned int serial) { shearwater_predator_parser_t *parser = NULL; const dc_parser_vtable_t *vtable = NULL; unsigned int samplesize = 0; if (out == NULL) return DC_STATUS_INVALIDARGS; if (model != PREDATOR) { vtable = &shearwater_petrel_parser_vtable; samplesize = SZ_SAMPLE_PETREL; } else { vtable = &shearwater_predator_parser_vtable; samplesize = SZ_SAMPLE_PREDATOR; } // Allocate memory. parser = (shearwater_predator_parser_t *) dc_parser_allocate (context, vtable); if (parser == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Set the default values. parser->model = model; parser->samplesize = samplesize; parser->serial = serial; // Set the default values. parser->cached = 0; parser->headersize = 0; parser->footersize = 0; parser->ngasmixes = 0; for (unsigned int i = 0; i < NGASMIXES; ++i) { parser->oxygen[i] = 0; parser->helium[i] = 0; } parser->mode = DC_DIVEMODE_OC; *out = (dc_parser_t *) parser; return DC_STATUS_SUCCESS; } static dc_status_t shearwater_predator_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size) { shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract; // Reset the cache. parser->cached = 0; parser->headersize = 0; parser->footersize = 0; parser->ngasmixes = 0; for (unsigned int i = 0; i < NGASMIXES; ++i) { parser->oxygen[i] = 0; parser->helium[i] = 0; } parser->mode = DC_DIVEMODE_OC; return DC_STATUS_SUCCESS; } static dc_status_t shearwater_predator_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime) { const unsigned char *data = abstract->data; unsigned int size = abstract->size; if (size < 2 * SZ_BLOCK) return DC_STATUS_DATAFORMAT; unsigned int ticks = array_uint32_be (data + 12); if (!dc_datetime_gmtime (datetime, ticks)) return DC_STATUS_DATAFORMAT; return DC_STATUS_SUCCESS; } /* * These string cache interfaces should be some generic * library rather than copied for all the dive computers. * * This is just copied from the EON Steel code. */ static void add_string(shearwater_predator_parser_t *parser, const char *desc, const char *value) { int i; for (i = 0; i < MAXSTRINGS; i++) { dc_field_string_t *str = parser->strings+i; if (str->desc) continue; str->desc = desc; str->value = strdup(value); break; } } static void add_string_fmt(shearwater_predator_parser_t *parser, const char *desc, const char *fmt, ...) { char buffer[256]; va_list ap; /* * We ignore the return value from vsnprintf, and we * always NUL-terminate the destination buffer ourselves. * * That way we don't have to worry about random bad legacy * implementations. */ va_start(ap, fmt); buffer[sizeof(buffer)-1] = 0; (void) vsnprintf(buffer, sizeof(buffer)-1, fmt, ap); va_end(ap); return add_string(parser, desc, buffer); } // The Battery state is a big-endian word: // // ffff = not paired / no comms for 90 s // fffe = no comms for 30 s // // Otherwise: // - top four bits are battery state (0 - normal, 1 - critical, 2 - warning) // - bottom 12 bits are pressure in 2 psi increments (0..8k psi) // // This returns the state as a bitmask (so you can see all states it had // during the dive). Note that we currently do not report pairing and // communication lapses. Todo? static unsigned int battery_state(const unsigned char *data) { unsigned int pressure = array_uint16_be(data); unsigned int state; if ((pressure & 0xFFF0) == 0xFFF0) return 0; state = pressure >> 12; if (state > 2) return 0; return 1u << state; } // Show the battery state // // NOTE! Right now it only shows the most serious bit // but the code is set up so that we could perhaps // indicate that the battery is on the edge (ie it // reported both "normal" _and_ "warning" during the // dive - maybe that would be a "starting to warn") // // We could also report unpaired and comm errors. static void add_battery_info(shearwater_predator_parser_t *parser, const char *desc, unsigned int state) { if (state >= 1 && state <= 7) { static const char *states[8] = { "", // 000 - No state bits, not used "normal", // 001 - only normal "critical", // 010 - only critical "critical", // 011 - both normal and critical "warning", // 100 - only warning "warning", // 101 - normal and warning "critical", // 110 - warning and critical "critical", // 111 - normal, warning and critical }; add_string(parser, desc, states[state]); } } static void add_deco_model(shearwater_predator_parser_t *parser, const unsigned char *data) { switch (data[67]) { case 0: add_string_fmt(parser, "Deco model", "GF %u/%u", data[4], data[5]); break; case 1: add_string_fmt(parser, "Deco model", "VPM-B +%u", data[68]); break; case 2: add_string_fmt(parser, "Deco model", "VPM-B/GFS +%u %u%%", data[68], data[85]); break; default: add_string_fmt(parser, "Deco model", "Unknown model %d", data[67]); } } static void add_battery_type(shearwater_predator_parser_t *parser, const unsigned char *data) { if (parser->logversion < 7) return; switch (data[120]) { case 1: add_string(parser, "Battery type", "1.5V Alkaline"); break; case 2: add_string(parser, "Battery type", "1.5V Lithium"); break; case 3: add_string(parser, "Battery type", "1.2V NiMH"); break; case 4: add_string(parser, "Battery type", "3.6V Saft"); break; case 5: add_string(parser, "Battery type", "3.7V Li-Ion"); break; default: add_string_fmt(parser, "Battery type", "unknown type %d", data[120]); break; } } static dc_status_t shearwater_predator_parser_cache (shearwater_predator_parser_t *parser) { dc_parser_t *abstract = (dc_parser_t *) parser; const unsigned char *data = parser->base.data; unsigned int size = parser->base.size; if (parser->cached) { return DC_STATUS_SUCCESS; } unsigned int headersize = SZ_BLOCK; unsigned int footersize = SZ_BLOCK; if (size < headersize + footersize) { ERROR (abstract->context, "Invalid data length."); return DC_STATUS_DATAFORMAT; } // Log versions before 6 weren't reliably stored in the data, but // 6 is also the oldest version that we assume in our code parser->logversion = 6; if (data[127] > 6) parser->logversion = data[127]; INFO(abstract->context, "Shearwater log version %u\n", parser->logversion); memset(parser->strings, 0, sizeof(parser->strings)); // Adjust the footersize for the final block. if (parser->model > PREDATOR || array_uint16_be (data + size - footersize) == 0xFFFD) { footersize += SZ_BLOCK; if (size < headersize + footersize) { ERROR (abstract->context, "Invalid data length."); return DC_STATUS_DATAFORMAT; } } // Default dive mode. dc_divemode_t mode = DC_DIVEMODE_OC; // Get the gas mixes. unsigned int ngasmixes = 0; unsigned int oxygen[NGASMIXES] = {0}; unsigned int helium[NGASMIXES] = {0}; unsigned int o2_previous = 0, he_previous = 0; // Transmitter battery levels unsigned int t1_battery = 0, t2_battery = 0; unsigned int offset = headersize; unsigned int length = size - footersize; while (offset < length) { // Ignore empty samples. if (array_isequal (data + offset, parser->samplesize, 0x00)) { offset += parser->samplesize; continue; } // Status flags. unsigned int status = data[offset + 11]; if ((status & OC) == 0) { mode = DC_DIVEMODE_CC; } // Gaschange. unsigned int o2 = data[offset + 7]; unsigned int he = data[offset + 8]; if (o2 != o2_previous || he != he_previous) { // Find the gasmix in the list. unsigned int idx = 0; while (idx < ngasmixes) { if (o2 == oxygen[idx] && he == helium[idx]) break; idx++; } // Add it to list if not found. if (idx >= ngasmixes) { if (idx >= NGASMIXES) { ERROR (abstract->context, "Maximum number of gas mixes reached."); return DC_STATUS_NOMEMORY; } oxygen[idx] = o2; helium[idx] = he; ngasmixes = idx + 1; } o2_previous = o2; he_previous = he; } // Transmitter battery levels if (parser->logversion >= 7) { // T1 at offset 27, T2 at offset 19 t1_battery |= battery_state(data + offset + 27); t2_battery |= battery_state(data + offset + 19); } offset += parser->samplesize; } // Cache sensor calibration for later use parser->calibration[0] = array_uint16_be(data + 87) / 100000.0; parser->calibration[1] = array_uint16_be(data + 89) / 100000.0; parser->calibration[2] = array_uint16_be(data + 91) / 100000.0; // The Predator expects the mV output of the cells to be within 30mV // to 70mV in 100% O2 at 1 atmosphere. // If the calibration value is scaled with a factor 2.2, then the // sensors lines up and matches the average. if (parser->model == PREDATOR) { for (size_t i = 0; i < 3; ++i) { parser->calibration[i] *= 2.2; } } // Cache the data for later use. parser->headersize = headersize; parser->footersize = footersize; parser->ngasmixes = ngasmixes; for (unsigned int i = 0; i < ngasmixes; ++i) { parser->oxygen[i] = oxygen[i]; parser->helium[i] = helium[i]; } parser->mode = mode; add_string_fmt(parser, "Serial", "%08x", parser->serial); add_string_fmt(parser, "FW Version", "%2x", data[19]); add_deco_model(parser, data); add_battery_type(parser, data); add_string_fmt(parser, "Battery at end", "%.1f V", data[9] / 10.0); add_battery_info(parser, "T1 battery", t1_battery); add_battery_info(parser, "T2 battery", t2_battery); parser->cached = 1; return DC_STATUS_SUCCESS; } static dc_status_t shearwater_predator_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value) { shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; // Cache the parser data. dc_status_t rc = shearwater_predator_parser_cache (parser); if (rc != DC_STATUS_SUCCESS) return rc; // Get the offset to the footer record. unsigned int footer = size - parser->footersize; // Get the unit system. unsigned int units = data[8]; dc_gasmix_t *gasmix = (dc_gasmix_t *) value; dc_salinity_t *water = (dc_salinity_t *) value; dc_field_string_t *string = (dc_field_string_t *) value; unsigned int density = 0; if (value) { switch (type) { case DC_FIELD_DIVETIME: *((unsigned int *) value) = array_uint16_be (data + footer + 6) * 60; break; case DC_FIELD_MAXDEPTH: if (units == IMPERIAL) *((double *) value) = array_uint16_be (data + footer + 4) * FEET; else *((double *) value) = array_uint16_be (data + footer + 4); break; case DC_FIELD_GASMIX_COUNT: *((unsigned int *) value) = parser->ngasmixes; break; case DC_FIELD_GASMIX: gasmix->oxygen = parser->oxygen[flags] / 100.0; gasmix->helium = parser->helium[flags] / 100.0; gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium; break; case DC_FIELD_SALINITY: density = array_uint16_be (data + 83); if (density == 1000) water->type = DC_WATER_FRESH; else water->type = DC_WATER_SALT; water->density = density; break; case DC_FIELD_ATMOSPHERIC: *((double *) value) = array_uint16_be (data + 47) / 1000.0; break; case DC_FIELD_DIVEMODE: *((dc_divemode_t *) value) = parser->mode; break; case DC_FIELD_STRING: if (flags < MAXSTRINGS) { dc_field_string_t *p = parser->strings + flags; if (p->desc) { *string = *p; break; } } return DC_STATUS_UNSUPPORTED; default: return DC_STATUS_UNSUPPORTED; } } return DC_STATUS_SUCCESS; } static dc_status_t shearwater_predator_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata) { shearwater_predator_parser_t *parser = (shearwater_predator_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; // Cache the parser data. dc_status_t rc = shearwater_predator_parser_cache (parser); if (rc != DC_STATUS_SUCCESS) return rc; // Get the unit system. unsigned int units = data[8]; // Previous gas mix. unsigned int o2_previous = 0, he_previous = 0; unsigned int time = 0; unsigned int offset = parser->headersize; unsigned int length = size - parser->footersize; while (offset < length) { dc_sample_value_t sample = {0}; // Ignore empty samples. if (array_isequal (data + offset, parser->samplesize, 0x00)) { offset += parser->samplesize; continue; } // Time (seconds). time += 10; sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); // Depth (1/10 m or ft). unsigned int depth = array_uint16_be (data + offset); if (units == IMPERIAL) sample.depth = depth * FEET / 10.0; else sample.depth = depth / 10.0; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); // Temperature (°C or °F). int temperature = (signed char) data[offset + 13]; if (temperature < 0) { // Fix negative temperatures. temperature += 102; if (temperature > 0) { temperature = 0; } } if (units == IMPERIAL) sample.temperature = (temperature - 32.0) * (5.0 / 9.0); else sample.temperature = temperature; if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata); // Status flags. unsigned int status = data[offset + 11]; if ((status & OC) == 0) { // PPO2 #ifdef SENSOR_AVERAGE sample.ppo2 = data[offset + 6] / 100.0; if (callback) callback (DC_SAMPLE_PPO2, sample, userdata); #else if ((status & PPO2_EXTERNAL) == 0) { sample.ppo2 = data[offset + 12] * parser->calibration[0]; if (callback && (data[86] & 0x01)) callback (DC_SAMPLE_PPO2, sample, userdata); sample.ppo2 = data[offset + 14] * parser->calibration[1]; if (callback && (data[86] & 0x02)) callback (DC_SAMPLE_PPO2, sample, userdata); sample.ppo2 = data[offset + 15] * parser->calibration[2]; if (callback && (data[86] & 0x04)) callback (DC_SAMPLE_PPO2, sample, userdata); } #endif // Setpoint if (parser->model > PREDATOR) { sample.setpoint = data[offset + 18] / 100.0; } else { if (status & SETPOINT_HIGH) { sample.setpoint = data[18] / 100.0; } else { sample.setpoint = data[17] / 100.0; } } if (callback) callback (DC_SAMPLE_SETPOINT, sample, userdata); } // CNS if (parser->model > PREDATOR) { sample.cns = data[offset + 22] / 100.0; if (callback) callback (DC_SAMPLE_CNS, sample, userdata); } // Gaschange. unsigned int o2 = data[offset + 7]; unsigned int he = data[offset + 8]; if (o2 != o2_previous || he != he_previous) { unsigned int idx = shearwater_predator_find_gasmix (parser, o2, he); if (idx >= parser->ngasmixes) { ERROR (abstract->context, "Invalid gas mix."); return DC_STATUS_DATAFORMAT; } sample.gasmix = idx; if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata); o2_previous = o2; he_previous = he; } // Deco stop / NDL. unsigned int decostop = array_uint16_be (data + offset + 2); if (decostop) { sample.deco.type = DC_DECO_DECOSTOP; if (units == IMPERIAL) sample.deco.depth = decostop * FEET; else sample.deco.depth = decostop; } else { sample.deco.type = DC_DECO_NDL; sample.deco.depth = 0.0; } sample.deco.time = data[offset + 9] * 60; if (callback) callback (DC_SAMPLE_DECO, sample, userdata); // for logversion 7 and newer (introduced for Perdix AI) // detect tank pressure if (parser->logversion >= 7) { // Pressure (2 psi). // 0xFFFF is not paired / no coms for 90 seconds // 0xFFFE no coms for 30 seconds // top 4 bits battery level: // 0 - normal, 1 - critical, 2 - warning unsigned int pressure = array_uint16_be (data + offset + 27); if ((pressure & 0xFFF0) != 0xFFF0) { pressure &= 0x0FFF; sample.pressure.tank = 0; sample.pressure.value = pressure * 2 * PSI / BAR; if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata); } pressure = array_uint16_be (data + offset + 19); if ((pressure & 0xFFF0) != 0xFFF0) { pressure &= 0x0FFF; sample.pressure.tank = 1; sample.pressure.value = pressure * 2 * PSI / BAR; if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata); } // Gas time remaining in minutes if (data[offset + 21] < 0xFBu) { sample.rbt = data[offset + 21]; if (callback) callback (DC_SAMPLE_RBT, sample, userdata); } } offset += parser->samplesize; } return DC_STATUS_SUCCESS; }