libdc/src/oceanic_atom2.c
2009-04-10 09:21:18 +00:00

725 lines
23 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include "device-private.h"
#include "oceanic_atom2.h"
#include "serial.h"
#include "utils.h"
#include "ringbuffer.h"
#include "checksum.h"
#include "array.h"
#define MAXRETRIES 2
#define WARNING(expr) \
{ \
message ("%s:%d: %s\n", __FILE__, __LINE__, expr); \
}
#define EXITCODE(rc) \
( \
rc == -1 ? DEVICE_STATUS_IO : DEVICE_STATUS_TIMEOUT \
)
#define FP_OFFSET 0
#define FP_SIZE 8
#define ACK 0x5A
#define NAK 0xA5
#define CF_POINTERS 0x0040
#define RB_LOGBOOK_EMPTY 0x0230
#define RB_LOGBOOK_BEGIN 0x0240
#define RB_LOGBOOK_END 0x0A40
#define RB_LOGBOOK_DISTANCE(a,b) ringbuffer_distance (a, b, RB_LOGBOOK_BEGIN, RB_LOGBOOK_END)
#define RB_LOGBOOK_INCR(a,b) ringbuffer_increment (a, b, RB_LOGBOOK_BEGIN, RB_LOGBOOK_END)
#define RB_PROFILE_EMPTY 0x0A40
#define RB_PROFILE_BEGIN 0x0A50
#define RB_PROFILE_END 0xFFF0
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define RB_PROFILE_INCR(a,b) ringbuffer_increment (a, b, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define PT_PROFILE_FIRST(x) (((array_uint16_le ((x) + 5) ) & 0x0FFF) * OCEANIC_ATOM2_PACKET_SIZE)
#define PT_PROFILE_LAST(x) (((array_uint16_le ((x) + 6) >> 4) & 0x0FFF) * OCEANIC_ATOM2_PACKET_SIZE)
typedef struct oceanic_atom2_device_t {
device_t base;
struct serial *port;
unsigned char fingerprint[FP_SIZE];
} oceanic_atom2_device_t;
static device_status_t oceanic_atom2_device_set_fingerprint (device_t *abstract, const unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_version (device_t *abstract, unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_read (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_write (device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_dump (device_t *abstract, unsigned char data[], unsigned int size, unsigned int *result);
static device_status_t oceanic_atom2_device_foreach (device_t *abstract, dive_callback_t callback, void *userdata);
static device_status_t oceanic_atom2_device_close (device_t *abstract);
static const device_backend_t oceanic_atom2_device_backend = {
DEVICE_TYPE_OCEANIC_ATOM2,
oceanic_atom2_device_set_fingerprint, /* set_fingerprint */
NULL, /* handshake */
oceanic_atom2_device_version, /* version */
oceanic_atom2_device_read, /* read */
oceanic_atom2_device_write, /* write */
oceanic_atom2_device_dump, /* dump */
oceanic_atom2_device_foreach, /* foreach */
oceanic_atom2_device_close /* close */
};
static unsigned int
ifloor (unsigned int x, unsigned int n)
{
// Round down to next lower multiple.
return (x / n) * n;
}
static unsigned int
iceil (unsigned int x, unsigned int n)
{
// Round up to next higher multiple.
return ((x + n - 1) / n) * n;
}
static int
device_is_oceanic_atom2 (device_t *abstract)
{
if (abstract == NULL)
return 0;
return abstract->backend == &oceanic_atom2_device_backend;
}
static device_status_t
oceanic_atom2_send (oceanic_atom2_device_t *device, const unsigned char command[], unsigned int csize)
{
// Send the command to the dive computer and
// wait until all data has been transmitted.
serial_write (device->port, command, csize);
serial_drain (device->port);
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_transfer (oceanic_atom2_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize)
{
// Send the command to the device. If the device responds with an
// ACK byte, the command was received successfully and the answer
// (if any) follows after the ACK byte. If the device responds with
// a NAK byte, we try to resend the command a number of times before
// returning an error.
unsigned int nretries = 0;
unsigned char response = NAK;
while (response == NAK) {
// Send the command to the dive computer.
device_status_t rc = oceanic_atom2_send (device, command, csize);
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Failed to send the command.");
return rc;
}
// Receive the response (ACK/NAK) of the dive computer.
int n = serial_read (device->port, &response, 1);
if (n != 1) {
WARNING ("Failed to receive the answer.");
return EXITCODE (n);
}
#ifndef NDEBUG
if (response != ACK)
message ("Received unexpected response (%02x).\n", response);
#endif
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
break;
}
// Verify the response of the dive computer.
if (response != ACK) {
WARNING ("Unexpected answer start byte(s).");
return DEVICE_STATUS_PROTOCOL;
}
if (asize) {
// Receive the answer of the dive computer.
int rc = serial_read (device->port, answer, asize);
if (rc != asize) {
WARNING ("Failed to receive the answer.");
return EXITCODE (rc);
}
// Verify the checksum of the answer.
unsigned char crc = answer[asize - 1];
unsigned char ccrc = checksum_add_uint8 (answer, asize - 1, 0x00);
if (crc != ccrc) {
WARNING ("Unexpected answer CRC.");
return DEVICE_STATUS_PROTOCOL;
}
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_init (oceanic_atom2_device_t *device)
{
// Send the command to the dive computer.
unsigned char command[3] = {0xA8, 0x99, 0x00};
device_status_t rc = oceanic_atom2_send (device, command, sizeof (command));
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Failed to send the command.");
return rc;
}
// Receive the answer of the dive computer.
unsigned char answer[3] = {0};
int n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
WARNING ("Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the answer.
if (answer[0] != NAK || answer[1] != NAK || answer[2] != NAK) {
WARNING ("Unexpected answer byte(s).");
return DEVICE_STATUS_PROTOCOL;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_quit (oceanic_atom2_device_t *device)
{
// Send the command to the dive computer.
unsigned char command[4] = {0x6A, 0x05, 0xA5, 0x00};
device_status_t rc = oceanic_atom2_send (device, command, sizeof (command));
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Failed to send the command.");
return rc;
}
// Receive the answer of the dive computer.
unsigned char answer[1] = {0};
int n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
WARNING ("Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the answer.
if (answer[0] != 0xA5) {
WARNING ("Unexpected answer byte(s).");
return DEVICE_STATUS_PROTOCOL;
}
return DEVICE_STATUS_SUCCESS;
}
device_status_t
oceanic_atom2_device_open (device_t **out, const char* name)
{
if (out == NULL)
return DEVICE_STATUS_ERROR;
// Allocate memory.
oceanic_atom2_device_t *device = (oceanic_atom2_device_t *) malloc (sizeof (oceanic_atom2_device_t));
if (device == NULL) {
WARNING ("Failed to allocate memory.");
return DEVICE_STATUS_MEMORY;
}
// Initialize the base class.
device_init (&device->base, &oceanic_atom2_device_backend);
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, FP_SIZE);
// Open the device.
int rc = serial_open (&device->port, name);
if (rc == -1) {
WARNING ("Failed to open the serial port.");
free (device);
return DEVICE_STATUS_IO;
}
// Set the serial communication protocol (38400 8N1).
rc = serial_configure (device->port, 38400, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
WARNING ("Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DEVICE_STATUS_IO;
}
// Set the timeout for receiving data (3000 ms).
if (serial_set_timeout (device->port, 3000) == -1) {
WARNING ("Failed to set the timeout.");
serial_close (device->port);
free (device);
return DEVICE_STATUS_IO;
}
// Give the interface 100 ms to settle and draw power up.
serial_sleep (100);
// Make sure everything is in a sane state.
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Send the init command.
oceanic_atom2_init (device);
*out = (device_t*) device;
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_set_fingerprint (device_t *abstract, const unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
if (size && size != FP_SIZE)
return DEVICE_STATUS_ERROR;
if (size)
memcpy (device->fingerprint, data, FP_SIZE);
else
memset (device->fingerprint, 0, FP_SIZE);
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_close (device_t *abstract)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
// Send the quit command.
oceanic_atom2_quit (device);
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DEVICE_STATUS_IO;
}
// Free memory.
free (device);
return DEVICE_STATUS_SUCCESS;
}
device_status_t
oceanic_atom2_device_keepalive (device_t *abstract)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
// Send the command to the dive computer.
unsigned char command[4] = {0x91, 0x05, 0xA5, 0x00};
device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), NULL, 0);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_version (device_t *abstract, unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
if (size < OCEANIC_ATOM2_PACKET_SIZE)
return DEVICE_STATUS_MEMORY;
unsigned char answer[OCEANIC_ATOM2_PACKET_SIZE + 1] = {0};
unsigned char command[2] = {0x84, 0x00};
device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
memcpy (data, answer, OCEANIC_ATOM2_PACKET_SIZE);
#ifndef NDEBUG
answer[OCEANIC_ATOM2_PACKET_SIZE] = 0;
message ("ATOM2ReadVersion()=\"%s\"\n", answer);
#endif
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_read (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
assert (address % OCEANIC_ATOM2_PACKET_SIZE == 0);
assert (size % OCEANIC_ATOM2_PACKET_SIZE == 0);
// The data transmission is split in packages
// of maximum $OCEANIC_ATOM2_PACKET_SIZE bytes.
unsigned int nbytes = 0;
while (nbytes < size) {
// Read the package.
unsigned int number = address / OCEANIC_ATOM2_PACKET_SIZE;
unsigned char answer[OCEANIC_ATOM2_PACKET_SIZE + 1] = {0};
unsigned char command[4] = {0xB1,
(number >> 8) & 0xFF, // high
(number ) & 0xFF, // low
0};
device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
memcpy (data, answer, OCEANIC_ATOM2_PACKET_SIZE);
#ifndef NDEBUG
message ("ATOM2Read(0x%04x,%d)=\"", address, OCEANIC_ATOM2_PACKET_SIZE);
for (unsigned int i = 0; i < OCEANIC_ATOM2_PACKET_SIZE; ++i) {
message("%02x", data[i]);
}
message("\"\n");
#endif
nbytes += OCEANIC_ATOM2_PACKET_SIZE;
address += OCEANIC_ATOM2_PACKET_SIZE;
data += OCEANIC_ATOM2_PACKET_SIZE;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_write (device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
assert (address % OCEANIC_ATOM2_PACKET_SIZE == 0);
assert (size % OCEANIC_ATOM2_PACKET_SIZE == 0);
// The data transmission is split in packages
// of maximum $OCEANIC_ATOM2_PACKET_SIZE bytes.
unsigned int nbytes = 0;
while (nbytes < size) {
// Prepare to write the package.
unsigned int number = address / OCEANIC_ATOM2_PACKET_SIZE;
unsigned char prepare[4] = {0xB2,
(number >> 8) & 0xFF, // high
(number ) & 0xFF, // low
0x00};
device_status_t rc = oceanic_atom2_transfer (device, prepare, sizeof (prepare), NULL, 0);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
#ifndef NDEBUG
message ("ATOM2PrepareWrite(0x%04x,%d)\n", address, OCEANIC_ATOM2_PACKET_SIZE);
#endif
// Write the package.
unsigned char command[OCEANIC_ATOM2_PACKET_SIZE + 2] = {0};
memcpy (command, data, OCEANIC_ATOM2_PACKET_SIZE);
command[OCEANIC_ATOM2_PACKET_SIZE] = checksum_add_uint8 (command, OCEANIC_ATOM2_PACKET_SIZE, 0x00);
rc = oceanic_atom2_transfer (device, command, sizeof (command), NULL, 0);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
#ifndef NDEBUG
message ("ATOM2Write(0x%04x,%d)=\"", address, OCEANIC_ATOM2_PACKET_SIZE);
for (unsigned int i = 0; i < OCEANIC_ATOM2_PACKET_SIZE; ++i) {
message("%02x", data[i]);
}
message("\"\n");
#endif
nbytes += OCEANIC_ATOM2_PACKET_SIZE;
address += OCEANIC_ATOM2_PACKET_SIZE;
data += OCEANIC_ATOM2_PACKET_SIZE;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_dump (device_t *abstract, unsigned char data[], unsigned int size, unsigned int *result)
{
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
if (size < OCEANIC_ATOM2_MEMORY_SIZE) {
WARNING ("Insufficient buffer space available.");
return DEVICE_STATUS_MEMORY;
}
device_status_t rc = oceanic_atom2_device_read (abstract, 0x00, data, OCEANIC_ATOM2_MEMORY_SIZE);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
if (result)
*result = OCEANIC_ATOM2_MEMORY_SIZE;
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_foreach (device_t *abstract, dive_callback_t callback, void *userdata)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
// Read the pointer data.
unsigned char pointers[OCEANIC_ATOM2_PACKET_SIZE] = {0};
device_status_t rc = oceanic_atom2_device_read (abstract, CF_POINTERS, pointers, OCEANIC_ATOM2_PACKET_SIZE);
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Cannot read pointers.");
return rc;
}
// Get the logbook pointers.
unsigned int rb_logbook_first = array_uint16_le (pointers + 4);
unsigned int rb_logbook_last = array_uint16_le (pointers + 6);
// Convert the first/last pointers to begin/end/count pointers.
unsigned int rb_logbook_entry_begin, rb_logbook_entry_end,
rb_logbook_entry_size;
if (rb_logbook_first == RB_LOGBOOK_EMPTY &&
rb_logbook_last == RB_LOGBOOK_EMPTY)
{
// Empty ringbuffer.
rb_logbook_entry_begin = RB_LOGBOOK_BEGIN;
rb_logbook_entry_end = RB_LOGBOOK_BEGIN;
rb_logbook_entry_size = 0;
} else {
// Non-empty ringbuffer.
rb_logbook_entry_begin = rb_logbook_first;
rb_logbook_entry_end = RB_LOGBOOK_INCR (rb_logbook_last, OCEANIC_ATOM2_PACKET_SIZE / 2);
rb_logbook_entry_size = RB_LOGBOOK_DISTANCE (rb_logbook_first, rb_logbook_last) + OCEANIC_ATOM2_PACKET_SIZE / 2;
}
// Check whether the ringbuffer is full.
int full = (rb_logbook_entry_size == (RB_LOGBOOK_END - RB_LOGBOOK_BEGIN));
// Align the pointers to page boundaries.
unsigned int rb_logbook_page_begin, rb_logbook_page_end,
rb_logbook_page_size;
if (full) {
// Full ringbuffer.
rb_logbook_page_begin = iceil (rb_logbook_entry_end, OCEANIC_ATOM2_PACKET_SIZE);
rb_logbook_page_end = rb_logbook_page_begin;
rb_logbook_page_size = rb_logbook_entry_size;
} else {
// Non-full ringbuffer.
rb_logbook_page_begin = ifloor (rb_logbook_entry_begin, OCEANIC_ATOM2_PACKET_SIZE);
rb_logbook_page_end = iceil (rb_logbook_entry_end, OCEANIC_ATOM2_PACKET_SIZE);
rb_logbook_page_size = rb_logbook_entry_size +
(rb_logbook_entry_begin - rb_logbook_page_begin) +
(rb_logbook_page_end - rb_logbook_entry_end);
}
// Check whether the last entry is not aligned to a page boundary.
int unaligned = (rb_logbook_entry_end != rb_logbook_page_end);
// Memory buffer for the logbook entries.
unsigned char logbooks[RB_LOGBOOK_END - RB_LOGBOOK_BEGIN] = {0};
// Since entries are not necessary aligned on page boundaries,
// the memory buffer may contain padding entries on both sides.
// The memory area which contains the valid entries is marked
// with a number of additional variables.
unsigned int begin = 0;
unsigned int end = rb_logbook_page_size;
if (!full) {
begin += rb_logbook_entry_begin - rb_logbook_page_begin;
end -= rb_logbook_page_end - rb_logbook_entry_end;
}
// The logbook ringbuffer is read backwards to retrieve the most recent
// entries first. If an already downloaded entry is identified (by means
// of its fingerprint), the transfer is aborted immediately to reduce
// the transfer time. When necessary, padding entries are downloaded
// (but not processed) to align all read requests on page boundaries.
unsigned int entry = end;
unsigned int page = rb_logbook_page_size;
unsigned int address = rb_logbook_page_end;
unsigned int npages = rb_logbook_page_size / OCEANIC_ATOM2_PACKET_SIZE;
for (unsigned int i = 0; i < npages; ++i) {
// Move to the start of the current page.
if (address == RB_LOGBOOK_BEGIN)
address = RB_LOGBOOK_END;
address -= OCEANIC_ATOM2_PACKET_SIZE;
page -= OCEANIC_ATOM2_PACKET_SIZE;
// Read the logbook page.
rc = oceanic_atom2_device_read (abstract, address, logbooks + page, OCEANIC_ATOM2_PACKET_SIZE);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
// A full ringbuffer needs some special treatment to avoid
// having to download the first/last page twice. When a full
// ringbuffer is not aligned to page boundaries, this page
// will contain both the most recent and oldest entry.
if (full && unaligned) {
if (i == 0) {
// After downloading the first page, move both the oldest
// and most recent entries to their correct location.
unsigned int oldest = rb_logbook_page_end - rb_logbook_entry_end;
unsigned int newest = OCEANIC_ATOM2_PACKET_SIZE - oldest;
// Move the oldest entries down to the start of the buffer.
memcpy (logbooks, logbooks + page + newest, oldest);
// Move the newest entries up to the end of the buffer.
memmove (logbooks + page + oldest, logbooks + page, newest);
// Adjust the current page offset to the new position.
page += oldest;
} else if (i == npages - 1) {
// After downloading the last page, pretend we have also
// downloaded those oldest entries from the first page.
page = 0;
}
}
// Process the logbook entries.
int abort = 0;
while (entry != page && entry != begin) {
// Move to the start of the current entry.
entry -= OCEANIC_ATOM2_PACKET_SIZE / 2;
// Compare the fingerprint to identify previously downloaded entries.
if (memcmp (logbooks + entry + FP_OFFSET, device->fingerprint, FP_SIZE) == 0) {
begin = entry + OCEANIC_ATOM2_PACKET_SIZE / 2;
abort = 1;
break;
}
}
// Stop reading pages too.
if (abort)
break;
}
// Exit if there are no (new) dives.
if (begin == end)
return DEVICE_STATUS_SUCCESS;
// Memory buffer for the profile data.
unsigned char profiles[(RB_PROFILE_END - RB_PROFILE_BEGIN) + OCEANIC_ATOM2_PACKET_SIZE / 2] = {0};
// Calculate the total amount of bytes in the profile ringbuffer,
// based on the pointers in the first and last logbook entry.
unsigned int rb_profile_first = PT_PROFILE_FIRST (logbooks + begin);
unsigned int rb_profile_last = PT_PROFILE_LAST (logbooks + end - OCEANIC_ATOM2_PACKET_SIZE / 2);
unsigned int rb_profile_end = RB_PROFILE_INCR (rb_profile_last, OCEANIC_ATOM2_PACKET_SIZE);
unsigned int rb_profile_size = RB_PROFILE_DISTANCE (rb_profile_first, rb_profile_last) + OCEANIC_ATOM2_PACKET_SIZE;
// Traverse the logbook ringbuffer backwards to retrieve the most recent
// dives first. The logbook ringbuffer is linearized at this point, so
// we do not have to take into account any memory wrapping near the end
// of the memory buffer.
entry = end;
page = rb_profile_size + OCEANIC_ATOM2_PACKET_SIZE / 2;
address = rb_profile_end;
while (entry != begin) {
// Move to the start of the current entry.
entry -= OCEANIC_ATOM2_PACKET_SIZE / 2;
// Get the profile pointers.
unsigned int rb_entry_first = PT_PROFILE_FIRST (logbooks + entry);
unsigned int rb_entry_last = PT_PROFILE_LAST (logbooks + entry);
unsigned int rb_entry_end = RB_PROFILE_INCR (rb_entry_last, OCEANIC_ATOM2_PACKET_SIZE);
unsigned int rb_entry_size = RB_PROFILE_DISTANCE (rb_entry_first, rb_entry_last) + OCEANIC_ATOM2_PACKET_SIZE;
// Make sure the profiles are continuous.
assert (address == rb_entry_end);
// Read the profile data.
npages = rb_entry_size / OCEANIC_ATOM2_PACKET_SIZE;
for (unsigned int i = 0; i < npages; ++i) {
// Move to the start of the current page.
if (address == RB_PROFILE_BEGIN)
address = RB_PROFILE_END;
address -= OCEANIC_ATOM2_PACKET_SIZE;
page -= OCEANIC_ATOM2_PACKET_SIZE;
// Read the profile page.
rc = oceanic_atom2_device_read (abstract, address, profiles + page, OCEANIC_ATOM2_PACKET_SIZE);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
}
// Prepend the logbook entry to the profile data. The memory buffer
// is large enough to store this entry, but it will be overwritten
// when the next profile is downloaded.
memcpy (profiles + page - OCEANIC_ATOM2_PACKET_SIZE / 2, logbooks + entry, OCEANIC_ATOM2_PACKET_SIZE / 2);
if (callback && !callback (profiles + page - OCEANIC_ATOM2_PACKET_SIZE / 2, rb_entry_size + OCEANIC_ATOM2_PACKET_SIZE / 2, userdata))
return DEVICE_STATUS_SUCCESS;
}
return DEVICE_STATUS_SUCCESS;
}