/* * libdivecomputer * * Copyright (C) 2008 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include // memcpy #include // malloc, free #include // assert #include "device-private.h" #include "oceanic_atom2.h" #include "serial.h" #include "utils.h" #include "ringbuffer.h" #include "checksum.h" #include "array.h" #define MAXRETRIES 2 #define WARNING(expr) \ { \ message ("%s:%d: %s\n", __FILE__, __LINE__, expr); \ } #define EXITCODE(rc) \ ( \ rc == -1 ? DEVICE_STATUS_IO : DEVICE_STATUS_TIMEOUT \ ) #define FP_OFFSET 0 #define FP_SIZE 8 #define ACK 0x5A #define NAK 0xA5 #define CF_POINTERS 0x0040 #define RB_LOGBOOK_EMPTY 0x0230 #define RB_LOGBOOK_BEGIN 0x0240 #define RB_LOGBOOK_END 0x0A40 #define RB_LOGBOOK_DISTANCE(a,b) ringbuffer_distance (a, b, RB_LOGBOOK_BEGIN, RB_LOGBOOK_END) #define RB_LOGBOOK_INCR(a,b) ringbuffer_increment (a, b, RB_LOGBOOK_BEGIN, RB_LOGBOOK_END) #define RB_PROFILE_EMPTY 0x0A40 #define RB_PROFILE_BEGIN 0x0A50 #define RB_PROFILE_END 0xFFF0 #define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, RB_PROFILE_BEGIN, RB_PROFILE_END) #define RB_PROFILE_INCR(a,b) ringbuffer_increment (a, b, RB_PROFILE_BEGIN, RB_PROFILE_END) #define PT_PROFILE_FIRST(x) (((array_uint16_le ((x) + 5) ) & 0x0FFF) * OCEANIC_ATOM2_PACKET_SIZE) #define PT_PROFILE_LAST(x) (((array_uint16_le ((x) + 6) >> 4) & 0x0FFF) * OCEANIC_ATOM2_PACKET_SIZE) typedef struct oceanic_atom2_device_t { device_t base; struct serial *port; unsigned char fingerprint[FP_SIZE]; } oceanic_atom2_device_t; static device_status_t oceanic_atom2_device_set_fingerprint (device_t *abstract, const unsigned char data[], unsigned int size); static device_status_t oceanic_atom2_device_version (device_t *abstract, unsigned char data[], unsigned int size); static device_status_t oceanic_atom2_device_read (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size); static device_status_t oceanic_atom2_device_write (device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size); static device_status_t oceanic_atom2_device_dump (device_t *abstract, unsigned char data[], unsigned int size, unsigned int *result); static device_status_t oceanic_atom2_device_foreach (device_t *abstract, dive_callback_t callback, void *userdata); static device_status_t oceanic_atom2_device_close (device_t *abstract); static const device_backend_t oceanic_atom2_device_backend = { DEVICE_TYPE_OCEANIC_ATOM2, oceanic_atom2_device_set_fingerprint, /* set_fingerprint */ NULL, /* handshake */ oceanic_atom2_device_version, /* version */ oceanic_atom2_device_read, /* read */ oceanic_atom2_device_write, /* write */ oceanic_atom2_device_dump, /* dump */ oceanic_atom2_device_foreach, /* foreach */ oceanic_atom2_device_close /* close */ }; static unsigned int ifloor (unsigned int x, unsigned int n) { // Round down to next lower multiple. return (x / n) * n; } static unsigned int iceil (unsigned int x, unsigned int n) { // Round up to next higher multiple. return ((x + n - 1) / n) * n; } static int device_is_oceanic_atom2 (device_t *abstract) { if (abstract == NULL) return 0; return abstract->backend == &oceanic_atom2_device_backend; } static device_status_t oceanic_atom2_send (oceanic_atom2_device_t *device, const unsigned char command[], unsigned int csize) { // Send the command to the dive computer and // wait until all data has been transmitted. serial_write (device->port, command, csize); serial_drain (device->port); return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_transfer (oceanic_atom2_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize) { // Send the command to the device. If the device responds with an // ACK byte, the command was received successfully and the answer // (if any) follows after the ACK byte. If the device responds with // a NAK byte, we try to resend the command a number of times before // returning an error. unsigned int nretries = 0; unsigned char response = NAK; while (response == NAK) { // Send the command to the dive computer. device_status_t rc = oceanic_atom2_send (device, command, csize); if (rc != DEVICE_STATUS_SUCCESS) { WARNING ("Failed to send the command."); return rc; } // Receive the response (ACK/NAK) of the dive computer. int n = serial_read (device->port, &response, 1); if (n != 1) { WARNING ("Failed to receive the answer."); return EXITCODE (n); } #ifndef NDEBUG if (response != ACK) message ("Received unexpected response (%02x).\n", response); #endif // Abort if the maximum number of retries is reached. if (nretries++ >= MAXRETRIES) break; } // Verify the response of the dive computer. if (response != ACK) { WARNING ("Unexpected answer start byte(s)."); return DEVICE_STATUS_PROTOCOL; } if (asize) { // Receive the answer of the dive computer. int rc = serial_read (device->port, answer, asize); if (rc != asize) { WARNING ("Failed to receive the answer."); return EXITCODE (rc); } // Verify the checksum of the answer. unsigned char crc = answer[asize - 1]; unsigned char ccrc = checksum_add_uint8 (answer, asize - 1, 0x00); if (crc != ccrc) { WARNING ("Unexpected answer CRC."); return DEVICE_STATUS_PROTOCOL; } } return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_init (oceanic_atom2_device_t *device) { // Send the command to the dive computer. unsigned char command[3] = {0xA8, 0x99, 0x00}; device_status_t rc = oceanic_atom2_send (device, command, sizeof (command)); if (rc != DEVICE_STATUS_SUCCESS) { WARNING ("Failed to send the command."); return rc; } // Receive the answer of the dive computer. unsigned char answer[3] = {0}; int n = serial_read (device->port, answer, sizeof (answer)); if (n != sizeof (answer)) { WARNING ("Failed to receive the answer."); return EXITCODE (n); } // Verify the answer. if (answer[0] != NAK || answer[1] != NAK || answer[2] != NAK) { WARNING ("Unexpected answer byte(s)."); return DEVICE_STATUS_PROTOCOL; } return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_quit (oceanic_atom2_device_t *device) { // Send the command to the dive computer. unsigned char command[4] = {0x6A, 0x05, 0xA5, 0x00}; device_status_t rc = oceanic_atom2_send (device, command, sizeof (command)); if (rc != DEVICE_STATUS_SUCCESS) { WARNING ("Failed to send the command."); return rc; } // Receive the answer of the dive computer. unsigned char answer[1] = {0}; int n = serial_read (device->port, answer, sizeof (answer)); if (n != sizeof (answer)) { WARNING ("Failed to receive the answer."); return EXITCODE (n); } // Verify the answer. if (answer[0] != 0xA5) { WARNING ("Unexpected answer byte(s)."); return DEVICE_STATUS_PROTOCOL; } return DEVICE_STATUS_SUCCESS; } device_status_t oceanic_atom2_device_open (device_t **out, const char* name) { if (out == NULL) return DEVICE_STATUS_ERROR; // Allocate memory. oceanic_atom2_device_t *device = (oceanic_atom2_device_t *) malloc (sizeof (oceanic_atom2_device_t)); if (device == NULL) { WARNING ("Failed to allocate memory."); return DEVICE_STATUS_MEMORY; } // Initialize the base class. device_init (&device->base, &oceanic_atom2_device_backend); // Set the default values. device->port = NULL; memset (device->fingerprint, 0, FP_SIZE); // Open the device. int rc = serial_open (&device->port, name); if (rc == -1) { WARNING ("Failed to open the serial port."); free (device); return DEVICE_STATUS_IO; } // Set the serial communication protocol (38400 8N1). rc = serial_configure (device->port, 38400, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE); if (rc == -1) { WARNING ("Failed to set the terminal attributes."); serial_close (device->port); free (device); return DEVICE_STATUS_IO; } // Set the timeout for receiving data (3000 ms). if (serial_set_timeout (device->port, 3000) == -1) { WARNING ("Failed to set the timeout."); serial_close (device->port); free (device); return DEVICE_STATUS_IO; } // Give the interface 100 ms to settle and draw power up. serial_sleep (100); // Make sure everything is in a sane state. serial_flush (device->port, SERIAL_QUEUE_BOTH); // Send the init command. oceanic_atom2_init (device); *out = (device_t*) device; return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_set_fingerprint (device_t *abstract, const unsigned char data[], unsigned int size) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; if (size && size != FP_SIZE) return DEVICE_STATUS_ERROR; if (size) memcpy (device->fingerprint, data, FP_SIZE); else memset (device->fingerprint, 0, FP_SIZE); return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_close (device_t *abstract) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; // Send the quit command. oceanic_atom2_quit (device); // Close the device. if (serial_close (device->port) == -1) { free (device); return DEVICE_STATUS_IO; } // Free memory. free (device); return DEVICE_STATUS_SUCCESS; } device_status_t oceanic_atom2_device_keepalive (device_t *abstract) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; // Send the command to the dive computer. unsigned char command[4] = {0x91, 0x05, 0xA5, 0x00}; device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), NULL, 0); if (rc != DEVICE_STATUS_SUCCESS) return rc; return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_version (device_t *abstract, unsigned char data[], unsigned int size) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; if (size < OCEANIC_ATOM2_PACKET_SIZE) return DEVICE_STATUS_MEMORY; unsigned char answer[OCEANIC_ATOM2_PACKET_SIZE + 1] = {0}; unsigned char command[2] = {0x84, 0x00}; device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), answer, sizeof (answer)); if (rc != DEVICE_STATUS_SUCCESS) return rc; memcpy (data, answer, OCEANIC_ATOM2_PACKET_SIZE); #ifndef NDEBUG answer[OCEANIC_ATOM2_PACKET_SIZE] = 0; message ("ATOM2ReadVersion()=\"%s\"\n", answer); #endif return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_read (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; assert (address % OCEANIC_ATOM2_PACKET_SIZE == 0); assert (size % OCEANIC_ATOM2_PACKET_SIZE == 0); // The data transmission is split in packages // of maximum $OCEANIC_ATOM2_PACKET_SIZE bytes. unsigned int nbytes = 0; while (nbytes < size) { // Read the package. unsigned int number = address / OCEANIC_ATOM2_PACKET_SIZE; unsigned char answer[OCEANIC_ATOM2_PACKET_SIZE + 1] = {0}; unsigned char command[4] = {0xB1, (number >> 8) & 0xFF, // high (number ) & 0xFF, // low 0}; device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), answer, sizeof (answer)); if (rc != DEVICE_STATUS_SUCCESS) return rc; memcpy (data, answer, OCEANIC_ATOM2_PACKET_SIZE); #ifndef NDEBUG message ("ATOM2Read(0x%04x,%d)=\"", address, OCEANIC_ATOM2_PACKET_SIZE); for (unsigned int i = 0; i < OCEANIC_ATOM2_PACKET_SIZE; ++i) { message("%02x", data[i]); } message("\"\n"); #endif nbytes += OCEANIC_ATOM2_PACKET_SIZE; address += OCEANIC_ATOM2_PACKET_SIZE; data += OCEANIC_ATOM2_PACKET_SIZE; } return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_write (device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; assert (address % OCEANIC_ATOM2_PACKET_SIZE == 0); assert (size % OCEANIC_ATOM2_PACKET_SIZE == 0); // The data transmission is split in packages // of maximum $OCEANIC_ATOM2_PACKET_SIZE bytes. unsigned int nbytes = 0; while (nbytes < size) { // Prepare to write the package. unsigned int number = address / OCEANIC_ATOM2_PACKET_SIZE; unsigned char prepare[4] = {0xB2, (number >> 8) & 0xFF, // high (number ) & 0xFF, // low 0x00}; device_status_t rc = oceanic_atom2_transfer (device, prepare, sizeof (prepare), NULL, 0); if (rc != DEVICE_STATUS_SUCCESS) return rc; #ifndef NDEBUG message ("ATOM2PrepareWrite(0x%04x,%d)\n", address, OCEANIC_ATOM2_PACKET_SIZE); #endif // Write the package. unsigned char command[OCEANIC_ATOM2_PACKET_SIZE + 2] = {0}; memcpy (command, data, OCEANIC_ATOM2_PACKET_SIZE); command[OCEANIC_ATOM2_PACKET_SIZE] = checksum_add_uint8 (command, OCEANIC_ATOM2_PACKET_SIZE, 0x00); rc = oceanic_atom2_transfer (device, command, sizeof (command), NULL, 0); if (rc != DEVICE_STATUS_SUCCESS) return rc; #ifndef NDEBUG message ("ATOM2Write(0x%04x,%d)=\"", address, OCEANIC_ATOM2_PACKET_SIZE); for (unsigned int i = 0; i < OCEANIC_ATOM2_PACKET_SIZE; ++i) { message("%02x", data[i]); } message("\"\n"); #endif nbytes += OCEANIC_ATOM2_PACKET_SIZE; address += OCEANIC_ATOM2_PACKET_SIZE; data += OCEANIC_ATOM2_PACKET_SIZE; } return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_dump (device_t *abstract, unsigned char data[], unsigned int size, unsigned int *result) { if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; if (size < OCEANIC_ATOM2_MEMORY_SIZE) { WARNING ("Insufficient buffer space available."); return DEVICE_STATUS_MEMORY; } device_status_t rc = oceanic_atom2_device_read (abstract, 0x00, data, OCEANIC_ATOM2_MEMORY_SIZE); if (rc != DEVICE_STATUS_SUCCESS) return rc; if (result) *result = OCEANIC_ATOM2_MEMORY_SIZE; return DEVICE_STATUS_SUCCESS; } static device_status_t oceanic_atom2_device_foreach (device_t *abstract, dive_callback_t callback, void *userdata) { oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract; if (! device_is_oceanic_atom2 (abstract)) return DEVICE_STATUS_TYPE_MISMATCH; // Read the pointer data. unsigned char pointers[OCEANIC_ATOM2_PACKET_SIZE] = {0}; device_status_t rc = oceanic_atom2_device_read (abstract, CF_POINTERS, pointers, OCEANIC_ATOM2_PACKET_SIZE); if (rc != DEVICE_STATUS_SUCCESS) { WARNING ("Cannot read pointers."); return rc; } // Get the logbook pointers. unsigned int rb_logbook_first = array_uint16_le (pointers + 4); unsigned int rb_logbook_last = array_uint16_le (pointers + 6); // Convert the first/last pointers to begin/end/count pointers. unsigned int rb_logbook_entry_begin, rb_logbook_entry_end, rb_logbook_entry_size; if (rb_logbook_first == RB_LOGBOOK_EMPTY && rb_logbook_last == RB_LOGBOOK_EMPTY) { // Empty ringbuffer. rb_logbook_entry_begin = RB_LOGBOOK_BEGIN; rb_logbook_entry_end = RB_LOGBOOK_BEGIN; rb_logbook_entry_size = 0; } else { // Non-empty ringbuffer. rb_logbook_entry_begin = rb_logbook_first; rb_logbook_entry_end = RB_LOGBOOK_INCR (rb_logbook_last, OCEANIC_ATOM2_PACKET_SIZE / 2); rb_logbook_entry_size = RB_LOGBOOK_DISTANCE (rb_logbook_first, rb_logbook_last) + OCEANIC_ATOM2_PACKET_SIZE / 2; } // Check whether the ringbuffer is full. int full = (rb_logbook_entry_size == (RB_LOGBOOK_END - RB_LOGBOOK_BEGIN)); // Align the pointers to page boundaries. unsigned int rb_logbook_page_begin, rb_logbook_page_end, rb_logbook_page_size; if (full) { // Full ringbuffer. rb_logbook_page_begin = iceil (rb_logbook_entry_end, OCEANIC_ATOM2_PACKET_SIZE); rb_logbook_page_end = rb_logbook_page_begin; rb_logbook_page_size = rb_logbook_entry_size; } else { // Non-full ringbuffer. rb_logbook_page_begin = ifloor (rb_logbook_entry_begin, OCEANIC_ATOM2_PACKET_SIZE); rb_logbook_page_end = iceil (rb_logbook_entry_end, OCEANIC_ATOM2_PACKET_SIZE); rb_logbook_page_size = rb_logbook_entry_size + (rb_logbook_entry_begin - rb_logbook_page_begin) + (rb_logbook_page_end - rb_logbook_entry_end); } // Check whether the last entry is not aligned to a page boundary. int unaligned = (rb_logbook_entry_end != rb_logbook_page_end); // Memory buffer for the logbook entries. unsigned char logbooks[RB_LOGBOOK_END - RB_LOGBOOK_BEGIN] = {0}; // Since entries are not necessary aligned on page boundaries, // the memory buffer may contain padding entries on both sides. // The memory area which contains the valid entries is marked // with a number of additional variables. unsigned int begin = 0; unsigned int end = rb_logbook_page_size; if (!full) { begin += rb_logbook_entry_begin - rb_logbook_page_begin; end -= rb_logbook_page_end - rb_logbook_entry_end; } // The logbook ringbuffer is read backwards to retrieve the most recent // entries first. If an already downloaded entry is identified (by means // of its fingerprint), the transfer is aborted immediately to reduce // the transfer time. When necessary, padding entries are downloaded // (but not processed) to align all read requests on page boundaries. unsigned int entry = end; unsigned int page = rb_logbook_page_size; unsigned int address = rb_logbook_page_end; unsigned int npages = rb_logbook_page_size / OCEANIC_ATOM2_PACKET_SIZE; for (unsigned int i = 0; i < npages; ++i) { // Move to the start of the current page. if (address == RB_LOGBOOK_BEGIN) address = RB_LOGBOOK_END; address -= OCEANIC_ATOM2_PACKET_SIZE; page -= OCEANIC_ATOM2_PACKET_SIZE; // Read the logbook page. rc = oceanic_atom2_device_read (abstract, address, logbooks + page, OCEANIC_ATOM2_PACKET_SIZE); if (rc != DEVICE_STATUS_SUCCESS) return rc; // A full ringbuffer needs some special treatment to avoid // having to download the first/last page twice. When a full // ringbuffer is not aligned to page boundaries, this page // will contain both the most recent and oldest entry. if (full && unaligned) { if (i == 0) { // After downloading the first page, move both the oldest // and most recent entries to their correct location. unsigned int oldest = rb_logbook_page_end - rb_logbook_entry_end; unsigned int newest = OCEANIC_ATOM2_PACKET_SIZE - oldest; // Move the oldest entries down to the start of the buffer. memcpy (logbooks, logbooks + page + newest, oldest); // Move the newest entries up to the end of the buffer. memmove (logbooks + page + oldest, logbooks + page, newest); // Adjust the current page offset to the new position. page += oldest; } else if (i == npages - 1) { // After downloading the last page, pretend we have also // downloaded those oldest entries from the first page. page = 0; } } // Process the logbook entries. int abort = 0; while (entry != page && entry != begin) { // Move to the start of the current entry. entry -= OCEANIC_ATOM2_PACKET_SIZE / 2; // Compare the fingerprint to identify previously downloaded entries. if (memcmp (logbooks + entry + FP_OFFSET, device->fingerprint, FP_SIZE) == 0) { begin = entry + OCEANIC_ATOM2_PACKET_SIZE / 2; abort = 1; break; } } // Stop reading pages too. if (abort) break; } // Exit if there are no (new) dives. if (begin == end) return DEVICE_STATUS_SUCCESS; // Memory buffer for the profile data. unsigned char profiles[(RB_PROFILE_END - RB_PROFILE_BEGIN) + OCEANIC_ATOM2_PACKET_SIZE / 2] = {0}; // Calculate the total amount of bytes in the profile ringbuffer, // based on the pointers in the first and last logbook entry. unsigned int rb_profile_first = PT_PROFILE_FIRST (logbooks + begin); unsigned int rb_profile_last = PT_PROFILE_LAST (logbooks + end - OCEANIC_ATOM2_PACKET_SIZE / 2); unsigned int rb_profile_end = RB_PROFILE_INCR (rb_profile_last, OCEANIC_ATOM2_PACKET_SIZE); unsigned int rb_profile_size = RB_PROFILE_DISTANCE (rb_profile_first, rb_profile_last) + OCEANIC_ATOM2_PACKET_SIZE; // Traverse the logbook ringbuffer backwards to retrieve the most recent // dives first. The logbook ringbuffer is linearized at this point, so // we do not have to take into account any memory wrapping near the end // of the memory buffer. entry = end; page = rb_profile_size + OCEANIC_ATOM2_PACKET_SIZE / 2; address = rb_profile_end; while (entry != begin) { // Move to the start of the current entry. entry -= OCEANIC_ATOM2_PACKET_SIZE / 2; // Get the profile pointers. unsigned int rb_entry_first = PT_PROFILE_FIRST (logbooks + entry); unsigned int rb_entry_last = PT_PROFILE_LAST (logbooks + entry); unsigned int rb_entry_end = RB_PROFILE_INCR (rb_entry_last, OCEANIC_ATOM2_PACKET_SIZE); unsigned int rb_entry_size = RB_PROFILE_DISTANCE (rb_entry_first, rb_entry_last) + OCEANIC_ATOM2_PACKET_SIZE; // Make sure the profiles are continuous. assert (address == rb_entry_end); // Read the profile data. npages = rb_entry_size / OCEANIC_ATOM2_PACKET_SIZE; for (unsigned int i = 0; i < npages; ++i) { // Move to the start of the current page. if (address == RB_PROFILE_BEGIN) address = RB_PROFILE_END; address -= OCEANIC_ATOM2_PACKET_SIZE; page -= OCEANIC_ATOM2_PACKET_SIZE; // Read the profile page. rc = oceanic_atom2_device_read (abstract, address, profiles + page, OCEANIC_ATOM2_PACKET_SIZE); if (rc != DEVICE_STATUS_SUCCESS) return rc; } // Prepend the logbook entry to the profile data. The memory buffer // is large enough to store this entry, but it will be overwritten // when the next profile is downloaded. memcpy (profiles + page - OCEANIC_ATOM2_PACKET_SIZE / 2, logbooks + entry, OCEANIC_ATOM2_PACKET_SIZE / 2); if (callback && !callback (profiles + page - OCEANIC_ATOM2_PACKET_SIZE / 2, rb_entry_size + OCEANIC_ATOM2_PACKET_SIZE / 2, userdata)) return DEVICE_STATUS_SUCCESS; } return DEVICE_STATUS_SUCCESS; }