Unfortunately there are several devices where an invalid logbook begin
pointer occurs relative frequently. Typical examples are the Oceanic VT
4.1 and the Sherwood Wisdom 2. In such cases, the strict validation of
the pointer causes the download to fail, without being able to download
any dives at all.
Since the begin pointer is only needed to detect the oldest logbook
entry, we can fall back to downloading the entire logbook ringbuffer. If
we're lucky (and we usually are), we can detect the oldest entry by
inspecting the logbook entries once they are downloaded (e.g. presence
of uninitialized entries) and then the download will finish succesfully.
In the worst case scenario, we'll be able to download at least some
dives before hitting another error.
The ringbuffer_distance() function has a parameter to specify whether a
ringbuffer with identical begin/end pointers should be considered an
empty or a full ringbuffer. Hence there is no need to handle the case of
a full ringbuffer manually.
The warning about disabling the O2 sensors due to factory default
calibration values, applies only if there is at least one calibrated O2
sensor present.
This has no effect on the calibration bits, because those are already
zero if there are no calibrated O2 sensors present.
There is no need to expose the two step connection setup of the
underlying socket interface in the public api. Doing so may complicate
the implementation on platforms where the native api is not based on the
socket interface (e.g. Mac OS X).
Note that the function to connect based on the IrDA service name is
removed. It's not used anywhere in libdivecomputer and since IrDA is an
outdated technology nowadays, it's unlikely we'll need it in the future.
The device descriptors are extended with a filter function. During the
device discovery, this filter function is used to return only devices
that match a known dive computer.
The filtering is optional, and can be disabled by passing a NULL pointer
for the device descriptor when creating the iterator with one of the
dc_xxx_iterator_new() functions.
Replacing the callback based interface with an iterator based interface,
results in a more extensible abstraction with a common interface for
each of the built-in I/O implementations (serial, usbhid, irda and
bluetooth).
The -Wno-pedantic-ms-format option is only needed for the MinGW target.
But for some reason, the AX_APPEND_COMPILE_FLAGS macro enables the
option for all other GCC targets too. But during compilation GCC outputs
the warning "unrecognized command line option".
When the port number is set to zero (which is an invalid value), detect
the port number automatically. On Windows, we can simply supply the UUID
of the serial port service, and the Windows api will take care of the
discovery. On Linux (bluez), the SDP discovery needs to be performed
manually to retrieve the port number.
If all (calibrated) sensors still have their factory default calibration
values (2100), they are probably not calibrated properly. To avoid
returning incorrect ppO2 values to the application, they are manually
disabled (e.g. marked as uncalibrated).
Appending data to the buffer may fail if a memory allocation is
necessary to enlarge the buffer. Hence the return value of the
dc_buffer_append() call should always be checked, unless the memory was
already pre-allocated or the check is deferred after the last operation.
Unlike the Shearwater Petrel, the Shearwater Nerd 2 appears to have a
distinct model number from the Nerd.
Reported-by: Janice McLaughlin <janice@moremobilesoftware.com>
Shifting a 32bit value by 32 is undefined.
Instead of using shifts to create the mask, explicitly create it by
subtracting 1 from the signbit value (and using bitwise NOT to fill all
the higher bits).
This commit looks confusing because Jef wanted me to not have two places
where I use the bitwise not. So instead of creating an equivalent mask
variable and not having to change the return statements we end up with a
mask that is the bitwise invert of what was there before this commit and
therefore the return statements need to change as well.
Coverity CID 207769
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The Linux kernel uses the sir_name as a standard C string (in one
instance copying it into a 60 char buffer using kstrncpy with a length
limit of 60), we therefore need to ensure that it is 0 terminated.
Since the existing code didn't notify the caller if we were truncating
the string at 25 characters, I didn't add such a warning/error for
truncating at 24 characters.
I was not able to find documentation on how Windows uses irdaServiceName
but since this is implementing the same standard, the same change was
made to the Windows code.
In both cases I replaced the hardcoded length of 25 with a sizeof()
argument (but both Linux and Windows hard code that length in their
headers, so it seems unlikely this would ever change).
Coverity CID 207790
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
In the case of a submodule, the .git file is a text file pointing to the
correct module in the parent's .git folder. The git rev-parse works
correctly in both cases.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Add a new type to distinguish between closed circuit (CCR) and
semi-closed circuit (SCR) diving. Some dive computers from HW and
DiveSystem/Ratio support this.
Because the CCR/SCR abbreviations are more commonly used, let's take the
opportunity to also rename the existing DC_DIVEMODE_CC. To preserve
backwards compatibility, a macro is added to map the old name to the new
one.
Reported-by: Jan Mulder <jlmulder@xs4all.nl>
The OSTC3 stores the dive headers and profile data in two separate
memory areas. There is a header area with fixed positions and a profile
area which is used as a ring buffer. Each dive header stores the
position of the profile data in the ring buffer.
Now, once there are more dive headers then room for the profiles, the
oldest profiles (but not the headers) are overwritten with new data.
Because the dive headers are not updated when their profile data gets
overwritten, they will now point to data that is no longer available.
The internal logbook detects this situation and does not display the
profile. But during the download, there is no such check, and the OSTC
will send invalid profile data.
This invalid profile data should be dropped on the receiver side.
Unfortunately implementing the exact same check as is done by the OSTC
itself isn't possible, because the OSTC doesn't send the 6 byte internal
header on which the check is based. As a workaround, the two byte
end-of-profile marker and the length field in the profile header is used
to detect overwritten profiles.
For the socket based I/O stream implementations (IrDA and bluetooth) the
serial communication specific functions are meaningless. Implementing
them as no-ops allows the dive computer backends the call the I/O stream
functions unconditionally.
This is important for the bluetooth implementation, because bluetooth
enabled dive computers will be able to use both the native bluetooth
communication and the legacy bluetooth serial port emulation.
Wih the custom I/O implementation, an application can use its own
low-level I/O layer instead of using one of the built-in ones. The
application only needs to provide a set of callback functions, and
libdivecomputer will wrap them into a I/O stream.
The purpose of the new I/O interface is to provide a common interface
for all existing I/O implementations (serial, IrDA, bluetooth and USB
HID). With a common interface the dive computer backends can more easily
use different I/O implementations at runtime, without needing
significant code changes. For example bluetooth enabled devices can
easily switch between native bluetooth communication and serial port
emulation mode.
The new interface is modelled after the existing serial communication
api. Implementations where some of those functions are meaningless (e.g.
IrDA, bluetooth and USB), can just leave those functions unimplemented
(causing the call to fail with DC_STATUS_UNSUPPORTED), or implement it
as a no-op (always return DC_STATUS_SUCCESS).