After adding support for serial number on dc parsers on
libdivecomputer's Subsurface branch, we need to add the serial parameter
to parser calls as well. Just using 0...
Signed-off-by: Miika Turkia <miika.turkia@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Libdivecomputer always uses metric units internally. But when reverse
engineering a device that stores everything using imperial units, it's
very convenient to be able to switch the output to imperial units too.
The Shearwater devices support adding, removing or editing gas mixes
during the dive. The pre-defined gas mixes available in the opening and
closing block are only a snapshot of the configuration at the start and
at the end of the dive. Thus by editing the gas mixes during the dive
it's possible to switch to a gas mix that is not present in the opening
(or even the closing block). The parser doesn't support that.
To avoid this problem, we now collect the available gas mixes from the
sample data. As a side effect we only return those gas mixes that are
effectively used during the dive.
One of the newer D4i and D6i firmware versions (for example v1.5.9),
introduces a new variant of the data format. The new dive header is 8
bytes larger. The correct variant can be detected by means of the
logbook id tag at the start of the header.
By reading the hardware descriptor immediately after entering download
or service mode, we can identify the specific model and adapt to minor
differences in the communication protocol.
The Shearwater devices support adding, removing or editing gas mixes
during the dive. The pre-defined gas mixes available in the opening and
closing block are only a snapshot of the configuration at the start and
at the end of the dive. Thus by editing the gas mixes during the dive
it's possible to switch to a gas mix that is not present in the opening
(or even the closing block). The parser doesn't support that.
To avoid this problem, we now collect the available gas mixes from the
sample data. As a side effect we only return those gas mixes that are
effectively used during the dive.
One of the newer D4i and D6i firmware versions (for example v1.5.9),
introduces a new variant of the data format. The new dive header is 8
bytes larger. The correct variant can be detected by means of the
logbook id tag at the start of the header.
By reading the hardware descriptor immediately after entering download
or service mode, we can identify the specific model and adapt to minor
differences in the communication protocol.
For the OSTC3 compatible devices, a missing initial gas mix (e.g. no gas
marked as the first gas) leaves the initial gas mix index at its default
value of zero. This is different from the OSTC2 compatible devices,
where a missing initial gas is stored as the value 0xFF.
By initializing the index with the value 0xFF, the existing detection
works for both variants.
The existing output code is removed and replaced with the new XML and
RAW output formats. The desired output format can be selected with a new
command-line option. The XML format remains the default output format.
The RAW output format exports each dive to a raw (binary) file. To
output multiple files, the filename is interpreted as a template and
should contain one or more placeholders.
The new output interface provides the necessary infrastructure to add
support for multiple output formats. Due to the abstract interface, each
new format will require only minimal changes in the application itself.
On BSD based operating systems (which includes Mac OS X), the getopt()
function is posix compliant and thus the option processing stops when
the first non-option is found. But the getopt_long() function permutes
the argument vector, just like the GNU implementation.
Using a leading '+' character in the option string disables the
permutation again.