These are used to search for device nodes and were passed model and device id (for the exact version). However, all callers used them to search for the node corresponding to a specific struct divecomputer, so let's just pass that instead to make the caller site less complex. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
375 lines
11 KiB
C++
375 lines
11 KiB
C++
// SPDX-License-Identifier: GPL-2.0
|
|
#include "ssrf.h"
|
|
#include "dive.h"
|
|
#include "subsurface-string.h"
|
|
#include "device.h"
|
|
#include "errorhelper.h" // for verbose flag
|
|
#include "selection.h"
|
|
#include "core/settings/qPrefDiveComputer.h"
|
|
|
|
/*
|
|
* Good fake dive profiles are hard.
|
|
*
|
|
* "depthtime" is the integral of the dive depth over
|
|
* time ("area" of the dive profile). We want that
|
|
* area to match the average depth (avg_d*max_t).
|
|
*
|
|
* To do that, we generate a 6-point profile:
|
|
*
|
|
* (0, 0)
|
|
* (t1, max_d)
|
|
* (t2, max_d)
|
|
* (t3, d)
|
|
* (t4, d)
|
|
* (max_t, 0)
|
|
*
|
|
* with the same ascent/descent rates between the
|
|
* different depths.
|
|
*
|
|
* NOTE: avg_d, max_d and max_t are given constants.
|
|
* The rest we can/should play around with to get a
|
|
* good-looking profile.
|
|
*
|
|
* That six-point profile gives a total area of:
|
|
*
|
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
|
|
*
|
|
* And the "same ascent/descent rates" requirement
|
|
* gives us (time per depth must be same):
|
|
*
|
|
* t1 / max_d = (t3-t2) / (max_d-d)
|
|
* t1 / max_d = (max_t-t4) / d
|
|
*
|
|
* We also obviously require:
|
|
*
|
|
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
|
|
*
|
|
* Let us call 'd_frac = d / max_d', and we get:
|
|
*
|
|
* Total area must match average depth-time:
|
|
*
|
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
|
|
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
|
|
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
|
|
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
|
|
*
|
|
* and descent slope must match ascent slopes:
|
|
*
|
|
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
|
|
* t1 = (t3-t2)/(1-d_frac)
|
|
*
|
|
* and
|
|
*
|
|
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
|
|
* t1 = (max_t-t4)/d_frac
|
|
*
|
|
* In general, we have more free variables than we have constraints,
|
|
* but we can aim for certain basics, like a good ascent slope.
|
|
*/
|
|
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
|
|
{
|
|
double t_frac = max_t * (1 - avg_d / (double)max_d);
|
|
int t1 = lrint(max_d / slope);
|
|
int t4 = lrint(max_t - t1 * d_frac);
|
|
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
|
|
int t2 = lrint(t3 - t1 * (1 - d_frac));
|
|
|
|
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
|
|
return 0;
|
|
|
|
s[1].time.seconds = t1;
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = t2;
|
|
s[2].depth.mm = max_d;
|
|
s[3].time.seconds = t3;
|
|
s[3].depth.mm = lrint(max_d * d_frac);
|
|
s[4].time.seconds = t4;
|
|
s[4].depth.mm = lrint(max_d * d_frac);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* we have no average depth; instead of making up a random average depth
|
|
* we should assume either a PADI rectangular profile (for short and/or
|
|
* shallow dives) or more reasonably a six point profile with a 3 minute
|
|
* safety stop at 5m */
|
|
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
|
|
{
|
|
// shallow or short dives are just trapecoids based on the given slope
|
|
if (max_d < 10000 || max_t < 600) {
|
|
s[1].time.seconds = lrint(max_d / slope);
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = max_t - lrint(max_d / slope);
|
|
s[2].depth.mm = max_d;
|
|
} else {
|
|
s[1].time.seconds = lrint(max_d / slope);
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
|
|
s[2].depth.mm = max_d;
|
|
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
|
|
s[3].depth.mm = 5000;
|
|
s[4].time.seconds = max_t - lrint(5000 / slope);
|
|
s[4].depth.mm = 5000;
|
|
}
|
|
}
|
|
|
|
extern "C" void fake_dc(struct divecomputer *dc)
|
|
{
|
|
alloc_samples(dc, 6);
|
|
struct sample *fake = dc->sample;
|
|
int i;
|
|
|
|
dc->samples = 6;
|
|
|
|
/* The dive has no samples, so create a few fake ones */
|
|
int max_t = dc->duration.seconds;
|
|
int max_d = dc->maxdepth.mm;
|
|
int avg_d = dc->meandepth.mm;
|
|
|
|
memset(fake, 0, 6 * sizeof(struct sample));
|
|
fake[5].time.seconds = max_t;
|
|
for (i = 0; i < 6; i++) {
|
|
fake[i].bearing.degrees = -1;
|
|
fake[i].ndl.seconds = -1;
|
|
}
|
|
if (!max_t || !max_d) {
|
|
dc->samples = 0;
|
|
return;
|
|
}
|
|
|
|
/* Set last manually entered time to the total dive length */
|
|
dc->last_manual_time = dc->duration;
|
|
|
|
/*
|
|
* We want to fake the profile so that the average
|
|
* depth ends up correct. However, in the absence of
|
|
* a reasonable average, let's just make something
|
|
* up. Note that 'avg_d == max_d' is _not_ a reasonable
|
|
* average.
|
|
* We explicitly treat avg_d == 0 differently */
|
|
if (avg_d == 0) {
|
|
/* we try for a sane slope, but bow to the insanity of
|
|
* the user supplied data */
|
|
fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
|
|
if (fake[3].time.seconds == 0) { // just a 4 point profile
|
|
dc->samples = 4;
|
|
fake[3].time.seconds = max_t;
|
|
}
|
|
return;
|
|
}
|
|
if (avg_d < max_d / 10 || avg_d >= max_d) {
|
|
avg_d = (max_d + 10000) / 3;
|
|
if (avg_d > max_d)
|
|
avg_d = max_d * 2 / 3;
|
|
}
|
|
if (!avg_d)
|
|
avg_d = 1;
|
|
|
|
/*
|
|
* Ok, first we try a basic profile with a specific ascent
|
|
* rate (5 meters per minute) and d_frac (1/3).
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
|
|
return;
|
|
|
|
/*
|
|
* Ok, assume that didn't work because we cannot make the
|
|
* average come out right because it was a quick deep dive
|
|
* followed by a much shallower region
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
|
|
return;
|
|
|
|
/*
|
|
* Uhhuh. That didn't work. We'd need to find a good combination that
|
|
* satisfies our constraints. Currently, we don't, we just give insane
|
|
* slopes.
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
|
|
return;
|
|
|
|
/* Even that didn't work? Give up, there's something wrong */
|
|
}
|
|
|
|
static void match_id(void *_dc, const char *model, uint32_t deviceid,
|
|
const char *, const char *serial, const char *firmware)
|
|
{
|
|
struct divecomputer *dc = (divecomputer *)_dc;
|
|
|
|
if (dc->deviceid != deviceid)
|
|
return;
|
|
if (!model || !dc->model || strcmp(dc->model, model))
|
|
return;
|
|
|
|
if (serial && !dc->serial)
|
|
dc->serial = strdup(serial);
|
|
if (firmware && !dc->fw_version)
|
|
dc->fw_version = strdup(firmware);
|
|
}
|
|
|
|
/*
|
|
* When setting the device ID, we also fill in the
|
|
* serial number and firmware version data
|
|
*/
|
|
extern "C" void set_dc_deviceid(struct divecomputer *dc, unsigned int deviceid)
|
|
{
|
|
if (deviceid) {
|
|
dc->deviceid = deviceid;
|
|
call_for_each_dc(dc, match_id, false);
|
|
}
|
|
}
|
|
|
|
DiveComputerList dcList;
|
|
|
|
bool DiveComputerNode::operator==(const DiveComputerNode &a) const
|
|
{
|
|
return model == a.model &&
|
|
deviceId == a.deviceId &&
|
|
firmware == a.firmware &&
|
|
serialNumber == a.serialNumber &&
|
|
nickName == a.nickName;
|
|
}
|
|
|
|
bool DiveComputerNode::operator!=(const DiveComputerNode &a) const
|
|
{
|
|
return !(*this == a);
|
|
}
|
|
|
|
bool DiveComputerNode::operator<(const DiveComputerNode &a) const
|
|
{
|
|
return std::tie(model, deviceId) < std::tie(a.model, a.deviceId);
|
|
}
|
|
|
|
static const DiveComputerNode *getDCExact(const QVector<DiveComputerNode> &dcs, const divecomputer *dc)
|
|
{
|
|
auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{dc->model, dc->deviceid, {}, {}, {}});
|
|
return it != dcs.end() && it->model == dc->model && it->deviceId == dc->deviceid ? &*it : NULL;
|
|
}
|
|
|
|
static const DiveComputerNode *getDC(const QVector<DiveComputerNode> &dcs, const divecomputer *dc)
|
|
{
|
|
auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{dc->model, 0, {}, {}, {}});
|
|
return it != dcs.end() && it->model == dc->model ? &*it : NULL;
|
|
}
|
|
|
|
void DiveComputerNode::showchanges(const QString &n, const QString &s, const QString &f) const
|
|
{
|
|
if (nickName != n && !n.isEmpty())
|
|
qDebug("new nickname %s for DC model %s deviceId 0x%x", qPrintable(n), qPrintable(model), deviceId);
|
|
if (serialNumber != s && !s.isEmpty())
|
|
qDebug("new serial number %s for DC model %s deviceId 0x%x", qPrintable(s), qPrintable(model), deviceId);
|
|
if (firmware != f && !f.isEmpty())
|
|
qDebug("new firmware version %s for DC model %s deviceId 0x%x", qPrintable(f), qPrintable(model), deviceId);
|
|
}
|
|
|
|
static void addDC(QVector<DiveComputerNode> &dcs, const QString &m, uint32_t d, const QString &n, const QString &s, const QString &f)
|
|
{
|
|
if (m.isEmpty() || d == 0)
|
|
return;
|
|
auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{m, d, {}, {}, {}});
|
|
if (it != dcs.end() && it->model == m && it->deviceId == d) {
|
|
// debugging: show changes
|
|
if (verbose)
|
|
it->showchanges(n, s, f);
|
|
// Update any non-existent fields from the old entry
|
|
if (!n.isEmpty())
|
|
it->nickName = n;
|
|
if (!s.isEmpty())
|
|
it->serialNumber = s;
|
|
if (!f.isEmpty())
|
|
it->firmware = f;
|
|
} else {
|
|
dcs.insert(it, DiveComputerNode{m, d, s, f, n});
|
|
}
|
|
}
|
|
|
|
extern "C" void create_device_node(const char *model, uint32_t deviceid, const char *serial, const char *firmware, const char *nickname)
|
|
{
|
|
addDC(dcList.dcs, model, deviceid, nickname, serial, firmware);
|
|
}
|
|
|
|
extern "C" void clear_device_nodes()
|
|
{
|
|
dcList.dcs.clear();
|
|
}
|
|
|
|
static bool compareDCById(const DiveComputerNode &a, const DiveComputerNode &b)
|
|
{
|
|
return a.deviceId < b.deviceId;
|
|
}
|
|
|
|
extern "C" void call_for_each_dc (void *f, void (*callback)(void *, const char *, uint32_t, const char *, const char *, const char *),
|
|
bool select_only)
|
|
{
|
|
QVector<DiveComputerNode> values = dcList.dcs;
|
|
std::sort(values.begin(), values.end(), compareDCById);
|
|
for (const DiveComputerNode &node : values) {
|
|
bool found = false;
|
|
if (select_only) {
|
|
for (dive *d: getDiveSelection()) {
|
|
struct divecomputer *dc;
|
|
for_each_dc (d, dc) {
|
|
if (dc->deviceid == node.deviceId) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
break;
|
|
}
|
|
} else {
|
|
found = true;
|
|
}
|
|
if (found)
|
|
callback(f, qPrintable(node.model), node.deviceId, qPrintable(node.nickName),
|
|
qPrintable(node.serialNumber), qPrintable(node.firmware));
|
|
}
|
|
}
|
|
|
|
extern "C" int is_default_dive_computer(const char *vendor, const char *product)
|
|
{
|
|
return qPrefDiveComputer::vendor() == vendor && qPrefDiveComputer::product() == product;
|
|
}
|
|
|
|
extern "C" int is_default_dive_computer_device(const char *name)
|
|
{
|
|
return qPrefDiveComputer::device() == name;
|
|
}
|
|
|
|
extern "C" void set_dc_nickname(struct dive *dive)
|
|
{
|
|
if (!dive)
|
|
return;
|
|
|
|
struct divecomputer *dc;
|
|
|
|
for_each_dc (dive, dc) {
|
|
if (!empty_string(dc->model) && dc->deviceid &&
|
|
!getDCExact(dcList.dcs, dc)) {
|
|
// we don't have this one, yet
|
|
const DiveComputerNode *existNode = getDC(dcList.dcs, dc);
|
|
if (existNode) {
|
|
// we already have this model but a different deviceid
|
|
QString simpleNick(dc->model);
|
|
if (dc->deviceid == 0)
|
|
simpleNick.append(" (unknown deviceid)");
|
|
else
|
|
simpleNick.append(" (").append(QString::number(dc->deviceid, 16)).append(")");
|
|
addDC(dcList.dcs, dc->model, dc->deviceid, simpleNick, {}, {});
|
|
} else {
|
|
addDC(dcList.dcs, dc->model, dc->deviceid, {}, {}, {});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
QString get_dc_nickname(const struct divecomputer *dc)
|
|
{
|
|
const DiveComputerNode *existNode = getDCExact(dcList.dcs, dc);
|
|
|
|
if (existNode && !existNode->nickName.isEmpty())
|
|
return existNode->nickName;
|
|
else
|
|
return dc->model;
|
|
}
|