subsurface/cochran.c
Linus Torvalds 5bc3ba5e95 cochran: do the full de-scramble for one case
So this descrambles all the dives in *one* of my cochran test files.  I
still don't know what the dive data *means*, but it's not a random
jumble of bytes any more: there are very clear patterns.

However, the magic offsets that work for that particular CAN file are
not generic, because they don't work for another.  So there is some
magic dynamic decoding that I don't know about.  There is probably more
decode information in the initial decode block, over and beyond just the
scrambling bytes.

(The scrambling array is 234 bytes starting at 0x40001, but the first
actual *dive* data starts at 0x45e03, so there's tons of unknown stuff
in the file even outside the dives themselves)

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-27 14:10:55 -08:00

187 lines
5.0 KiB
C

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "dive.h"
#include "file.h"
/*
* The Cochran file format is designed to be annoying to read. It's roughly:
*
* 0x00000: room for 65534 4-byte words, giving the starting offsets
* of the dives themselves.
*
* 0x3fff8: the size of the file + 1
* 0x3ffff: 0 (high 32 bits of filesize? Bogus: the offsets into the file
* are 32-bit, so it can't be a large file anyway)
*
* 0x40000: "block 0": the decoding block. The first byte is some random
* value (0x46 in the files I have access to), the next 200+ bytes or so
* are the "scrambling array" that needs to be added into the file
* contents to make sense of them.
*
* The descrambling array seems to be of some random size which is likely
* determinable from the array somehow, the two test files I have it as
* 230 bytes and 234 bytes respectively.
*/
static unsigned int partial_decode(unsigned int start, unsigned int end,
const unsigned char *decode, unsigned offset, unsigned mod,
const unsigned char *buf, unsigned int size, unsigned char *dst)
{
unsigned i, sum = 0;
for (i = start ; i < end; i++) {
unsigned char d = decode[offset++];
if (i >= size)
break;
if (offset == mod)
offset = 0;
d += buf[i];
if (dst)
dst[i] = d;
sum += d;
}
return sum;
}
/*
* The decode buffer size can be figured out by simply trying our the
* decode: we expect that the scrambled contents are largely random, and
* thus tend to have half the bits set. Summing over the bytes is going
* to give an average of 0x80 per byte.
*
* The decoded array is mostly full of zeroes, so the sum is lower.
*
* Works for me.
*/
static int figure_out_modulus(const unsigned char *decode, const unsigned char *dive, unsigned int size)
{
int mod, best = -1;
unsigned int min = ~0u;
if (size < 0x1000)
return best;
for (mod = 50; mod < 300; mod++) {
unsigned int sum;
sum = partial_decode(0, 0x0fff, decode, 1, mod, dive, size, NULL);
if (sum < min) {
min = sum;
best = mod;
}
}
return best;
}
#define hexchar(n) ("0123456789abcdef"[(n)&15])
static void show_line(unsigned offset, const unsigned char *data, unsigned size)
{
unsigned char bits;
int i, off;
char buffer[120];
if (size > 16)
size = 16;
bits = 0;
memset(buffer, ' ', sizeof(buffer));
off = sprintf(buffer, "%06x ", offset);
for (i = 0; i < size; i++) {
char *hex = buffer + off + 3*i;
char *asc = buffer + off + 50 + i;
unsigned char byte = data[i];
hex[0] = hexchar(byte>>4);
hex[1] = hexchar(byte);
bits |= byte;
if (byte < 32 || byte > 126)
byte = '.';
asc[0] = byte;
asc[1] = 0;
}
if (bits)
puts(buffer);
}
static void cochran_debug_write(const char *filename, int dive, const unsigned char *data, unsigned size)
{
int i;
printf("\n%s, dive %d\n\n", filename, dive);
for (i = 0; i < size; i += 16) {
show_line(i, data + i, size - i);
}
}
static void parse_cochran_dive(const char *filename, int dive,
const unsigned char *decode, unsigned mod,
const unsigned char *in, unsigned size)
{
char *buf = malloc(size);
/*
* The scrambling has odd boundaries. I think the boundaries
* match some data structure size, but I don't know. They were
* discovered the same way we dynamically discover the decode
* size: automatically looking for least random output.
*
* The boundaries are also this confused "off-by-one" thing,
* the same way the file size is off by one. It's as if the
* cochran software forgot to write one byte at the beginning.
*/
partial_decode(0 , 0x0fff, decode, 1, mod, in, size, buf);
partial_decode(0x0fff, 0x1fff, decode, 0, mod, in, size, buf);
partial_decode(0x1fff, 0x2fff, decode, 0, mod, in, size, buf);
partial_decode(0x2fff, 0x48ff, decode, 0, mod, in, size, buf);
/*
* This is not all the descrambling you need - the above are just
* what appears to be the fixed-size blocks. The rest is also
* scrambled, but there seems to be size differences in the data,
* so this just descrambles part of it:
*/
partial_decode(0x48ff, 0x4a14, decode, 0, mod, in, size, buf);
partial_decode(0x4a14, 0xc9bd, decode, 0, mod, in, size, buf);
partial_decode(0xc9bd, size, decode, 0, mod, in, size, buf);
cochran_debug_write(filename, dive, buf, size);
free(buf);
}
int try_to_open_cochran(const char *filename, struct memblock *mem, GError **error)
{
unsigned int i;
unsigned int mod;
unsigned int *offsets, dive1, dive2;
unsigned char *decode = mem->buffer + 0x40001;
if (mem->size < 0x40000)
return 0;
offsets = mem->buffer;
dive1 = offsets[0];
dive2 = offsets[1];
if (dive1 < 0x40000 || dive2 < dive1 || dive2 > mem->size)
return 0;
mod = figure_out_modulus(decode, mem->buffer + dive1, dive2 - dive1);
for (i = 0; i < 65534; i++) {
dive1 = offsets[i];
dive2 = offsets[i+1];
if (dive2 < dive1)
break;
if (dive2 > mem->size)
break;
parse_cochran_dive(filename, i, decode, mod, mem->buffer + dive1, dive2 - dive1);
}
exit(0);
}