Jef Driesen e22ba69819 Implement the serial communication functions as no-ops
For the socket based I/O stream implementations (IrDA and bluetooth) the
serial communication specific functions are meaningless. Implementing
them as no-ops allows the dive computer backends the call the I/O stream
functions unconditionally.

This is important for the bluetooth implementation, because bluetooth
enabled dive computers will be able to use both the native bluetooth
communication and the legacy bluetooth serial port emulation.
2017-11-26 23:00:33 +01:00

276 lines
7.2 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h> // malloc, free
#include <stdio.h> // snprintf
#include <string.h>
#include "socket.h"
#ifdef _WIN32
#ifdef HAVE_AF_IRDA_H
#define IRDA
#include <af_irda.h>
#endif
#else
#ifdef HAVE_LINUX_IRDA_H
#define IRDA
#include <linux/types.h>
#include <linux/irda.h>
#endif
#endif
#include "irda.h"
#include "common-private.h"
#include "context-private.h"
#include "iostream-private.h"
#include "array.h"
#include "platform.h"
#define ISINSTANCE(device) dc_iostream_isinstance((device), &dc_irda_vtable)
#ifdef IRDA
static const dc_iostream_vtable_t dc_irda_vtable = {
sizeof(dc_socket_t),
dc_socket_set_timeout, /* set_timeout */
dc_socket_set_latency, /* set_latency */
dc_socket_set_halfduplex, /* set_halfduplex */
dc_socket_set_break, /* set_break */
dc_socket_set_dtr, /* set_dtr */
dc_socket_set_rts, /* set_rts */
dc_socket_get_lines, /* get_lines */
dc_socket_get_available, /* get_received */
dc_socket_configure, /* configure */
dc_socket_read, /* read */
dc_socket_write, /* write */
dc_socket_flush, /* flush */
dc_socket_purge, /* purge */
dc_socket_sleep, /* sleep */
dc_socket_close, /* close */
};
#endif
dc_status_t
dc_irda_open (dc_iostream_t **out, dc_context_t *context)
{
#ifdef IRDA
dc_status_t status = DC_STATUS_SUCCESS;
dc_socket_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (dc_socket_t *) dc_iostream_allocate (context, &dc_irda_vtable);
if (device == NULL) {
SYSERROR (context, S_ENOMEM);
return DC_STATUS_NOMEMORY;
}
// Open the socket.
status = dc_socket_open (&device->base, AF_IRDA, SOCK_STREAM, 0);
if (status != DC_STATUS_SUCCESS) {
goto error_free;
}
*out = (dc_iostream_t *) device;
return DC_STATUS_SUCCESS;
error_free:
dc_iostream_deallocate ((dc_iostream_t *) device);
return status;
#else
return DC_STATUS_UNSUPPORTED;
#endif
}
#define DISCOVER_MAX_DEVICES 16 // Maximum number of devices.
#define DISCOVER_MAX_RETRIES 4 // Maximum number of retries.
#ifdef _WIN32
#define DISCOVER_BUFSIZE sizeof (DEVICELIST) + \
sizeof (IRDA_DEVICE_INFO) * (DISCOVER_MAX_DEVICES - 1)
#else
#define DISCOVER_BUFSIZE sizeof (struct irda_device_list) + \
sizeof (struct irda_device_info) * (DISCOVER_MAX_DEVICES - 1)
#endif
dc_status_t
dc_irda_discover (dc_iostream_t *abstract, dc_irda_callback_t callback, void *userdata)
{
#ifdef IRDA
dc_socket_t *device = (dc_socket_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
unsigned char data[DISCOVER_BUFSIZE] = {0};
#ifdef _WIN32
DEVICELIST *list = (DEVICELIST *) data;
int size = sizeof (data);
#else
struct irda_device_list *list = (struct irda_device_list *) data;
socklen_t size = sizeof (data);
#endif
int rc = 0;
unsigned int nretries = 0;
while ((rc = getsockopt (device->fd, SOL_IRLMP, IRLMP_ENUMDEVICES, (char*) data, &size)) != 0 ||
#ifdef _WIN32
list->numDevice == 0)
#else
list->len == 0)
#endif
{
// Automatically retry the discovery when no devices were found.
// On Linux, getsockopt fails with EAGAIN when no devices are
// discovered, while on Windows it succeeds and sets the number
// of devices to zero. Both situations are handled the same here.
if (rc != 0) {
s_errcode_t errcode = S_ERRNO;
if (errcode != S_EAGAIN) {
SYSERROR (abstract->context, errcode);
return dc_socket_syserror(errcode);
}
}
// Abort if the maximum number of retries is reached.
if (nretries++ >= DISCOVER_MAX_RETRIES)
return DC_STATUS_SUCCESS;
// Restore the size parameter in case it was
// modified by the previous getsockopt call.
size = sizeof (data);
#ifdef _WIN32
Sleep (1000);
#else
sleep (1);
#endif
}
if (callback) {
#ifdef _WIN32
for (unsigned int i = 0; i < list->numDevice; ++i) {
const char *name = list->Device[i].irdaDeviceName;
unsigned int address = array_uint32_le (list->Device[i].irdaDeviceID);
unsigned int charset = list->Device[i].irdaCharSet;
unsigned int hints = (list->Device[i].irdaDeviceHints1 << 8) +
list->Device[i].irdaDeviceHints2;
#else
for (unsigned int i = 0; i < list->len; ++i) {
const char *name = list->dev[i].info;
unsigned int address = list->dev[i].daddr;
unsigned int charset = list->dev[i].charset;
unsigned int hints = array_uint16_be (list->dev[i].hints);
#endif
INFO (abstract->context,
"Discover: address=%08x, name=%s, charset=%02x, hints=%04x",
address, name, charset, hints);
callback (address, name, charset, hints, userdata);
}
}
return DC_STATUS_SUCCESS;
#else
return DC_STATUS_UNSUPPORTED;
#endif
}
dc_status_t
dc_irda_connect_name (dc_iostream_t *abstract, unsigned int address, const char *name)
{
#ifdef IRDA
dc_socket_t *device = (dc_socket_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
INFO (abstract->context, "Connect: address=%08x, name=%s", address, name ? name : "");
#ifdef _WIN32
SOCKADDR_IRDA peer;
peer.irdaAddressFamily = AF_IRDA;
peer.irdaDeviceID[0] = (address ) & 0xFF;
peer.irdaDeviceID[1] = (address >> 8) & 0xFF;
peer.irdaDeviceID[2] = (address >> 16) & 0xFF;
peer.irdaDeviceID[3] = (address >> 24) & 0xFF;
if (name)
strncpy (peer.irdaServiceName, name, 25);
else
memset (peer.irdaServiceName, 0x00, 25);
#else
struct sockaddr_irda peer;
peer.sir_family = AF_IRDA;
peer.sir_addr = address;
if (name)
strncpy (peer.sir_name, name, 25);
else
memset (peer.sir_name, 0x00, 25);
#endif
return dc_socket_connect (&device->base, (struct sockaddr *) &peer, sizeof (peer));
#else
return DC_STATUS_UNSUPPORTED;
#endif
}
dc_status_t
dc_irda_connect_lsap (dc_iostream_t *abstract, unsigned int address, unsigned int lsap)
{
#ifdef IRDA
dc_socket_t *device = (dc_socket_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
INFO (abstract->context, "Connect: address=%08x, lsap=%u", address, lsap);
#ifdef _WIN32
SOCKADDR_IRDA peer;
peer.irdaAddressFamily = AF_IRDA;
peer.irdaDeviceID[0] = (address ) & 0xFF;
peer.irdaDeviceID[1] = (address >> 8) & 0xFF;
peer.irdaDeviceID[2] = (address >> 16) & 0xFF;
peer.irdaDeviceID[3] = (address >> 24) & 0xFF;
snprintf (peer.irdaServiceName, 25, "LSAP-SEL%u", lsap);
#else
struct sockaddr_irda peer;
peer.sir_family = AF_IRDA;
peer.sir_addr = address;
peer.sir_lsap_sel = lsap;
memset (peer.sir_name, 0x00, 25);
#endif
return dc_socket_connect (&device->base, (struct sockaddr *) &peer, sizeof (peer));
#else
return DC_STATUS_UNSUPPORTED;
#endif
}