libdivecomputer/src/uwatec_smart.c
Jef Driesen ef2402eff5 Integrate the new I/O interface in the public api
Currently the dive computer backends are responsible for opening (and
closing) the underlying I/O stream internally. The consequence is that
each backend is hardwired to a specific transport type (e.g. serial,
irda or usbhid). In order to remove this dependency and support more
than one transport type in the same backend, the opening (and closing)
of the I/O stream is moved to the application.

The dc_device_open() function is modified to accept a pointer to the I/O
stream, instead of a string with the device node (which only makes sense
for serial communication). The dive computer backends only depend on the
common I/O interface.
2018-04-03 21:11:06 +02:00

367 lines
10 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc, free
#include <string.h> // strncmp, strstr
#include "uwatec_smart.h"
#include "context-private.h"
#include "device-private.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &uwatec_smart_device_vtable)
#define C_ARRAY_SIZE(array) (sizeof (array) / sizeof *(array))
typedef struct uwatec_smart_device_t {
dc_device_t base;
dc_iostream_t *iostream;
unsigned int timestamp;
unsigned int devtime;
dc_ticks_t systime;
} uwatec_smart_device_t;
static dc_status_t uwatec_smart_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size);
static dc_status_t uwatec_smart_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t uwatec_smart_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static const dc_device_vtable_t uwatec_smart_device_vtable = {
sizeof(uwatec_smart_device_t),
DC_FAMILY_UWATEC_SMART,
uwatec_smart_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
uwatec_smart_device_dump, /* dump */
uwatec_smart_device_foreach, /* foreach */
NULL, /* timesync */
NULL /* close */
};
static dc_status_t
uwatec_smart_extract_dives (dc_device_t *device, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata);
static dc_status_t
uwatec_smart_transfer (uwatec_smart_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
status = dc_iostream_write (device->iostream, command, csize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
status = dc_iostream_read (device->iostream, answer, asize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_handshake (uwatec_smart_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
// Command template.
unsigned char answer[1] = {0};
unsigned char command[5] = {0x00, 0x10, 0x27, 0, 0};
// Handshake (stage 1).
command[0] = 0x1B;
dc_status_t rc = uwatec_smart_transfer (device, command, 1, answer, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the answer.
if (answer[0] != 0x01) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
// Handshake (stage 2).
command[0] = 0x1C;
rc = uwatec_smart_transfer (device, command, 5, answer, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the answer.
if (answer[0] != 0x01) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
uwatec_smart_device_open (dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream)
{
dc_status_t status = DC_STATUS_SUCCESS;
uwatec_smart_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (uwatec_smart_device_t *) dc_device_allocate (context, &uwatec_smart_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->iostream = iostream;
device->timestamp = 0;
device->systime = (dc_ticks_t) -1;
device->devtime = 0;
// Perform the handshaking.
status = uwatec_smart_handshake (device);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to handshake with the device.");
goto error_free;
}
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
uwatec_smart_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract;
if (size && size != 4)
return DC_STATUS_INVALIDARGS;
if (size)
device->timestamp = array_uint32_le (data);
else
device->timestamp = 0;
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
uwatec_smart_device_t *device = (uwatec_smart_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
// Read the model number.
unsigned char cmd_model[1] = {0x10};
unsigned char model[1] = {0};
rc = uwatec_smart_transfer (device, cmd_model, sizeof (cmd_model), model, sizeof (model));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the serial number.
unsigned char cmd_serial[1] = {0x14};
unsigned char serial[4] = {0};
rc = uwatec_smart_transfer (device, cmd_serial, sizeof (cmd_serial), serial, sizeof (serial));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the device clock.
unsigned char cmd_devtime[1] = {0x1A};
unsigned char devtime[4] = {0};
rc = uwatec_smart_transfer (device, cmd_devtime, sizeof (cmd_devtime), devtime, sizeof (devtime));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Store the clock calibration values.
device->systime = dc_datetime_now ();
device->devtime = array_uint32_le (devtime);
// Update and emit a progress event.
progress.current += 9;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
// Emit a clock event.
dc_event_clock_t clock;
clock.systime = device->systime;
clock.devtime = device->devtime;
device_event_emit (&device->base, DC_EVENT_CLOCK, &clock);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = model[0];
devinfo.firmware = 0;
devinfo.serial = array_uint32_le (serial);
device_event_emit (&device->base, DC_EVENT_DEVINFO, &devinfo);
// Command template.
unsigned char command[9] = {0x00,
(device->timestamp ) & 0xFF,
(device->timestamp >> 8 ) & 0xFF,
(device->timestamp >> 16) & 0xFF,
(device->timestamp >> 24) & 0xFF,
0x10,
0x27,
0,
0};
// Data Length.
command[0] = 0xC6;
unsigned char answer[4] = {0};
rc = uwatec_smart_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int length = array_uint32_le (answer);
// Update and emit a progress event.
progress.maximum = 4 + 9 + (length ? length + 4 : 0);
progress.current += 4;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
if (length == 0)
return DC_STATUS_SUCCESS;
// Allocate the required amount of memory.
if (!dc_buffer_resize (buffer, length)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
unsigned char *data = dc_buffer_get_data (buffer);
// Data.
command[0] = 0xC4;
rc = uwatec_smart_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int total = array_uint32_le (answer);
// Update and emit a progress event.
progress.current += 4;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
if (total != length + 4) {
ERROR (abstract->context, "Received an unexpected size.");
return DC_STATUS_PROTOCOL;
}
unsigned int nbytes = 0;
while (nbytes < length) {
// Set the minimum packet size.
unsigned int len = 32;
// Increase the packet size if more data is immediately available.
size_t available = 0;
rc = dc_iostream_get_available (device->iostream, &available);
if (rc == DC_STATUS_SUCCESS && available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > length)
len = length - nbytes;
rc = dc_iostream_read (device->iostream, data + nbytes, len, NULL);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return rc;
}
// Update and emit a progress event.
progress.current += len;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
nbytes += len;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_smart_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (0);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = uwatec_smart_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
rc = uwatec_smart_extract_dives (abstract,
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
static dc_status_t
uwatec_smart_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
const unsigned char header[4] = {0xa5, 0xa5, 0x5a, 0x5a};
// Search the data stream for start markers.
unsigned int previous = size;
unsigned int current = (size >= 4 ? size - 4 : 0);
while (current > 0) {
current--;
if (memcmp (data + current, header, sizeof (header)) == 0) {
// Get the length of the profile data.
unsigned int len = array_uint32_le (data + current + 4);
// Check for a buffer overflow.
if (current + len > previous)
return DC_STATUS_DATAFORMAT;
if (callback && !callback (data + current, len, data + current + 8, 4, userdata))
return DC_STATUS_SUCCESS;
// Prepare for the next dive.
previous = current;
current = (current >= 4 ? current - 4 : 0);
}
}
return DC_STATUS_SUCCESS;
}