Currently the dive computer backends are responsible for opening (and closing) the underlying I/O stream internally. The consequence is that each backend is hardwired to a specific transport type (e.g. serial, irda or usbhid). In order to remove this dependency and support more than one transport type in the same backend, the opening (and closing) of the I/O stream is moved to the application. The dc_device_open() function is modified to accept a pointer to the I/O stream, instead of a string with the device node (which only makes sense for serial communication). The dive computer backends only depend on the common I/O interface.
397 lines
12 KiB
C
397 lines
12 KiB
C
/*
|
|
* libdivecomputer
|
|
*
|
|
* Copyright (C) 2008 Jef Driesen
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <string.h> // memcmp, memcpy
|
|
#include <stdlib.h> // malloc, free
|
|
|
|
#include "reefnet_sensuspro.h"
|
|
#include "context-private.h"
|
|
#include "device-private.h"
|
|
#include "checksum.h"
|
|
#include "array.h"
|
|
|
|
#define ISINSTANCE(device) dc_device_isinstance((device), &reefnet_sensuspro_device_vtable)
|
|
|
|
#define SZ_MEMORY 56320
|
|
#define SZ_HANDSHAKE 10
|
|
|
|
typedef struct reefnet_sensuspro_device_t {
|
|
dc_device_t base;
|
|
dc_iostream_t *iostream;
|
|
unsigned char handshake[SZ_HANDSHAKE];
|
|
unsigned int timestamp;
|
|
unsigned int devtime;
|
|
dc_ticks_t systime;
|
|
} reefnet_sensuspro_device_t;
|
|
|
|
static dc_status_t reefnet_sensuspro_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
|
|
static dc_status_t reefnet_sensuspro_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
|
|
static dc_status_t reefnet_sensuspro_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
|
|
|
|
static const dc_device_vtable_t reefnet_sensuspro_device_vtable = {
|
|
sizeof(reefnet_sensuspro_device_t),
|
|
DC_FAMILY_REEFNET_SENSUSPRO,
|
|
reefnet_sensuspro_device_set_fingerprint, /* set_fingerprint */
|
|
NULL, /* read */
|
|
NULL, /* write */
|
|
reefnet_sensuspro_device_dump, /* dump */
|
|
reefnet_sensuspro_device_foreach, /* foreach */
|
|
NULL, /* timesync */
|
|
NULL /* close */
|
|
};
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_extract_dives (dc_device_t *device, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata);
|
|
|
|
dc_status_t
|
|
reefnet_sensuspro_device_open (dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream)
|
|
{
|
|
dc_status_t status = DC_STATUS_SUCCESS;
|
|
reefnet_sensuspro_device_t *device = NULL;
|
|
|
|
if (out == NULL)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
// Allocate memory.
|
|
device = (reefnet_sensuspro_device_t *) dc_device_allocate (context, &reefnet_sensuspro_device_vtable);
|
|
if (device == NULL) {
|
|
ERROR (context, "Failed to allocate memory.");
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Set the default values.
|
|
device->iostream = iostream;
|
|
device->timestamp = 0;
|
|
device->systime = (dc_ticks_t) -1;
|
|
device->devtime = 0;
|
|
memset (device->handshake, 0, sizeof (device->handshake));
|
|
|
|
// Set the serial communication protocol (19200 8N1).
|
|
status = dc_iostream_configure (device->iostream, 19200, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (context, "Failed to set the terminal attributes.");
|
|
goto error_free;
|
|
}
|
|
|
|
// Set the timeout for receiving data (3000ms).
|
|
status = dc_iostream_set_timeout (device->iostream, 3000);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (context, "Failed to set the timeout.");
|
|
goto error_free;
|
|
}
|
|
|
|
// Make sure everything is in a sane state.
|
|
dc_iostream_purge (device->iostream, DC_DIRECTION_ALL);
|
|
|
|
*out = (dc_device_t*) device;
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
|
|
error_free:
|
|
dc_device_deallocate ((dc_device_t *) device);
|
|
return status;
|
|
}
|
|
|
|
|
|
dc_status_t
|
|
reefnet_sensuspro_device_get_handshake (dc_device_t *abstract, unsigned char data[], unsigned int size)
|
|
{
|
|
reefnet_sensuspro_device_t *device = (reefnet_sensuspro_device_t*) abstract;
|
|
|
|
if (!ISINSTANCE (abstract))
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
if (size < SZ_HANDSHAKE) {
|
|
ERROR (abstract->context, "Insufficient buffer space available.");
|
|
return DC_STATUS_INVALIDARGS;
|
|
}
|
|
|
|
memcpy (data, device->handshake, SZ_HANDSHAKE);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
|
|
{
|
|
reefnet_sensuspro_device_t *device = (reefnet_sensuspro_device_t*) abstract;
|
|
|
|
if (size && size != 4)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
if (size)
|
|
device->timestamp = array_uint32_le (data);
|
|
else
|
|
device->timestamp = 0;
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_handshake (reefnet_sensuspro_device_t *device)
|
|
{
|
|
dc_status_t status = DC_STATUS_SUCCESS;
|
|
dc_device_t *abstract = (dc_device_t *) device;
|
|
|
|
// Assert a break condition.
|
|
status = dc_iostream_set_break (device->iostream, 1);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (abstract->context, "Failed to set break.");
|
|
return status;
|
|
}
|
|
|
|
// Receive the handshake from the dive computer.
|
|
unsigned char handshake[SZ_HANDSHAKE + 2] = {0};
|
|
status = dc_iostream_read (device->iostream, handshake, sizeof (handshake), NULL);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (abstract->context, "Failed to receive the handshake.");
|
|
return status;
|
|
}
|
|
|
|
// Clear the break condition again.
|
|
status = dc_iostream_set_break (device->iostream, 0);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (abstract->context, "Failed to clear break.");
|
|
return status;
|
|
}
|
|
|
|
// Verify the checksum of the handshake packet.
|
|
unsigned short crc = array_uint16_le (handshake + SZ_HANDSHAKE);
|
|
unsigned short ccrc = checksum_crc_ccitt_uint16 (handshake, SZ_HANDSHAKE);
|
|
if (crc != ccrc) {
|
|
ERROR (abstract->context, "Unexpected answer checksum.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
// Store the clock calibration values.
|
|
device->systime = dc_datetime_now ();
|
|
device->devtime = array_uint32_le (handshake + 6);
|
|
|
|
// Store the handshake packet.
|
|
memcpy (device->handshake, handshake, SZ_HANDSHAKE);
|
|
|
|
// Emit a clock event.
|
|
dc_event_clock_t clock;
|
|
clock.systime = device->systime;
|
|
clock.devtime = device->devtime;
|
|
device_event_emit (&device->base, DC_EVENT_CLOCK, &clock);
|
|
|
|
// Emit a device info event.
|
|
dc_event_devinfo_t devinfo;
|
|
devinfo.model = handshake[0];
|
|
devinfo.firmware = handshake[1];
|
|
devinfo.serial = array_uint16_le (handshake + 4);
|
|
device_event_emit (&device->base, DC_EVENT_DEVINFO, &devinfo);
|
|
|
|
// Emit a vendor event.
|
|
dc_event_vendor_t vendor;
|
|
vendor.data = device->handshake;
|
|
vendor.size = sizeof (device->handshake);
|
|
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
|
|
|
|
dc_iostream_sleep (device->iostream, 10);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_send (reefnet_sensuspro_device_t *device, unsigned char command)
|
|
{
|
|
dc_status_t status = DC_STATUS_SUCCESS;
|
|
dc_device_t *abstract = (dc_device_t *) device;
|
|
|
|
// Wake-up the device.
|
|
dc_status_t rc = reefnet_sensuspro_handshake (device);
|
|
if (rc != DC_STATUS_SUCCESS)
|
|
return rc;
|
|
|
|
// Send the instruction code to the device.
|
|
status = dc_iostream_write (device->iostream, &command, 1, NULL);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (abstract->context, "Failed to send the command.");
|
|
return status;
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
|
|
{
|
|
dc_status_t status = DC_STATUS_SUCCESS;
|
|
reefnet_sensuspro_device_t *device = (reefnet_sensuspro_device_t*) abstract;
|
|
|
|
// Pre-allocate the required amount of memory.
|
|
if (!dc_buffer_reserve (buffer, SZ_MEMORY)) {
|
|
ERROR (abstract->context, "Insufficient buffer space available.");
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Enable progress notifications.
|
|
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
|
|
progress.maximum = SZ_MEMORY + 2;
|
|
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
|
|
|
|
// Wake-up the device and send the instruction code.
|
|
dc_status_t rc = reefnet_sensuspro_send (device, 0xB4);
|
|
if (rc != DC_STATUS_SUCCESS)
|
|
return rc;
|
|
|
|
unsigned int nbytes = 0;
|
|
unsigned char answer[SZ_MEMORY + 2] = {0};
|
|
while (nbytes < sizeof (answer)) {
|
|
unsigned int len = sizeof (answer) - nbytes;
|
|
if (len > 256)
|
|
len = 256;
|
|
|
|
status = dc_iostream_read (device->iostream, answer + nbytes, len, NULL);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (abstract->context, "Failed to receive the answer.");
|
|
return status;
|
|
}
|
|
|
|
// Update and emit a progress event.
|
|
progress.current += len;
|
|
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
|
|
|
|
nbytes += len;
|
|
}
|
|
|
|
unsigned short crc = array_uint16_le (answer + SZ_MEMORY);
|
|
unsigned short ccrc = checksum_crc_ccitt_uint16 (answer, SZ_MEMORY);
|
|
if (crc != ccrc) {
|
|
ERROR (abstract->context, "Unexpected answer checksum.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
dc_buffer_append (buffer, answer, SZ_MEMORY);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
|
|
{
|
|
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
|
|
if (buffer == NULL)
|
|
return DC_STATUS_NOMEMORY;
|
|
|
|
dc_status_t rc = reefnet_sensuspro_device_dump (abstract, buffer);
|
|
if (rc != DC_STATUS_SUCCESS) {
|
|
dc_buffer_free (buffer);
|
|
return rc;
|
|
}
|
|
|
|
rc = reefnet_sensuspro_extract_dives (abstract,
|
|
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
|
|
|
|
dc_buffer_free (buffer);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
dc_status_t
|
|
reefnet_sensuspro_device_write_interval (dc_device_t *abstract, unsigned char interval)
|
|
{
|
|
dc_status_t status = DC_STATUS_SUCCESS;
|
|
reefnet_sensuspro_device_t *device = (reefnet_sensuspro_device_t*) abstract;
|
|
|
|
if (!ISINSTANCE (abstract))
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
if (interval < 1 || interval > 127)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
// Wake-up the device and send the instruction code.
|
|
dc_status_t rc = reefnet_sensuspro_send (device, 0xB5);
|
|
if (rc != DC_STATUS_SUCCESS)
|
|
return rc;
|
|
|
|
dc_iostream_sleep (device->iostream, 10);
|
|
|
|
status = dc_iostream_write (device->iostream, &interval, 1, NULL);
|
|
if (status != DC_STATUS_SUCCESS) {
|
|
ERROR (abstract->context, "Failed to send the data packet.");
|
|
return status;
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
reefnet_sensuspro_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
|
|
{
|
|
reefnet_sensuspro_device_t *device = (reefnet_sensuspro_device_t*) abstract;
|
|
|
|
if (abstract && !ISINSTANCE (abstract))
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
const unsigned char header[4] = {0x00, 0x00, 0x00, 0x00};
|
|
const unsigned char footer[2] = {0xFF, 0xFF};
|
|
|
|
// Search the entire data stream for start markers.
|
|
unsigned int previous = size;
|
|
unsigned int current = (size >= 4 ? size - 4 : 0);
|
|
while (current > 0) {
|
|
current--;
|
|
if (memcmp (data + current, header, sizeof (header)) == 0) {
|
|
// Once a start marker is found, start searching
|
|
// for the corresponding stop marker. The search is
|
|
// now limited to the start of the previous dive.
|
|
int found = 0;
|
|
unsigned int offset = current + 10; // Skip non-sample data.
|
|
while (offset + 2 <= previous) {
|
|
if (memcmp (data + offset, footer, sizeof (footer)) == 0) {
|
|
found = 1;
|
|
break;
|
|
} else {
|
|
offset++;
|
|
}
|
|
}
|
|
|
|
// Report an error if no stop marker was found.
|
|
if (!found)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
// Automatically abort when a dive is older than the provided timestamp.
|
|
unsigned int timestamp = array_uint32_le (data + current + 6);
|
|
if (device && timestamp <= device->timestamp)
|
|
return DC_STATUS_SUCCESS;
|
|
|
|
if (callback && !callback (data + current, offset + 2 - current, data + current + 6, 4, userdata))
|
|
return DC_STATUS_SUCCESS;
|
|
|
|
// Prepare for the next dive.
|
|
previous = current;
|
|
current = (current >= 4 ? current - 4 : 0);
|
|
}
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|