Linus Torvalds f107d7c0d8 Add initial Scubapro G2 frontend
The back-end parser seems to be the same as for the Uwatec Smart (aka
Galileo Sol).  At least that's the assumption right now.

The downloader just uses USB HID (very similar to EON Steel) rather than
the horrible IrDA thing.

There's also eventually a BLE thing, but that's for the future.

This is an unholy mixture of the Uwatec Smart downloader logic and the
EON Steel usbhid transfer code.  The back-end is pure Uwatec Smart
(model 0x11, same as Galileo Sol).

I'm not at all sure this gets everything right, but it downloads
*something*.

[Jef Driesen: Renamed the backend to uwatec, and made some smaller
              cosmetic changes to match the existing coding style.]

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-06-28 15:32:39 +02:00

343 lines
9.0 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2015 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h>
#include <stdio.h>
#ifdef _WIN32
#include <io.h>
#include <fcntl.h>
#endif
#include "common.h"
#include "utils.h"
#ifdef _WIN32
#define DC_TICKS_FORMAT "%I64d"
#else
#define DC_TICKS_FORMAT "%lld"
#endif
#define C_ARRAY_SIZE(array) (sizeof (array) / sizeof *(array))
typedef struct backend_table_t {
const char *name;
dc_family_t type;
unsigned int model;
} backend_table_t;
static const backend_table_t g_backends[] = {
{"solution", DC_FAMILY_SUUNTO_SOLUTION, 0},
{"eon", DC_FAMILY_SUUNTO_EON, 0},
{"vyper", DC_FAMILY_SUUNTO_VYPER, 0x0A},
{"vyper2", DC_FAMILY_SUUNTO_VYPER2, 0x10},
{"d9", DC_FAMILY_SUUNTO_D9, 0x0E},
{"eonsteel", DC_FAMILY_SUUNTO_EONSTEEL, 0},
{"aladin", DC_FAMILY_UWATEC_ALADIN, 0x3F},
{"memomouse", DC_FAMILY_UWATEC_MEMOMOUSE, 0},
{"smart", DC_FAMILY_UWATEC_SMART, 0x10},
{"meridian", DC_FAMILY_UWATEC_MERIDIAN, 0x20},
{"g2", DC_FAMILY_UWATEC_G2, 0x11},
{"sensus", DC_FAMILY_REEFNET_SENSUS, 1},
{"sensuspro", DC_FAMILY_REEFNET_SENSUSPRO, 2},
{"sensusultra", DC_FAMILY_REEFNET_SENSUSULTRA, 3},
{"vtpro", DC_FAMILY_OCEANIC_VTPRO, 0x4245},
{"veo250", DC_FAMILY_OCEANIC_VEO250, 0x424C},
{"atom2", DC_FAMILY_OCEANIC_ATOM2, 0x4342},
{"nemo", DC_FAMILY_MARES_NEMO, 0},
{"puck", DC_FAMILY_MARES_PUCK, 7},
{"darwin", DC_FAMILY_MARES_DARWIN, 0},
{"iconhd", DC_FAMILY_MARES_ICONHD, 0x14},
{"ostc", DC_FAMILY_HW_OSTC, 0},
{"frog", DC_FAMILY_HW_FROG, 0},
{"ostc3", DC_FAMILY_HW_OSTC3, 0x0A},
{"edy", DC_FAMILY_CRESSI_EDY, 0x08},
{"leonardo", DC_FAMILY_CRESSI_LEONARDO, 1},
{"n2ition3", DC_FAMILY_ZEAGLE_N2ITION3, 0},
{"cobalt", DC_FAMILY_ATOMICS_COBALT, 0},
{"predator", DC_FAMILY_SHEARWATER_PREDATOR, 2},
{"petrel", DC_FAMILY_SHEARWATER_PETREL, 3},
{"nitekq", DC_FAMILY_DIVERITE_NITEKQ, 0},
{"aqualand", DC_FAMILY_CITIZEN_AQUALAND, 0},
{"idive", DC_FAMILY_DIVESYSTEM_IDIVE, 0x03},
{"cochran", DC_FAMILY_COCHRAN_COMMANDER, 0},
};
const char *
dctool_errmsg (dc_status_t status)
{
switch (status) {
case DC_STATUS_SUCCESS:
return "Success";
case DC_STATUS_UNSUPPORTED:
return "Unsupported operation";
case DC_STATUS_INVALIDARGS:
return "Invalid arguments";
case DC_STATUS_NOMEMORY:
return "Out of memory";
case DC_STATUS_NODEVICE:
return "No device found";
case DC_STATUS_NOACCESS:
return "Access denied";
case DC_STATUS_IO:
return "Input/output error";
case DC_STATUS_TIMEOUT:
return "Timeout";
case DC_STATUS_PROTOCOL:
return "Protocol error";
case DC_STATUS_DATAFORMAT:
return "Data format error";
case DC_STATUS_CANCELLED:
return "Cancelled";
default:
return "Unknown error";
}
}
dc_family_t
dctool_family_type (const char *name)
{
for (unsigned int i = 0; i < C_ARRAY_SIZE (g_backends); ++i) {
if (strcmp (name, g_backends[i].name) == 0)
return g_backends[i].type;
}
return DC_FAMILY_NULL;
}
const char *
dctool_family_name (dc_family_t type)
{
for (unsigned int i = 0; i < C_ARRAY_SIZE (g_backends); ++i) {
if (g_backends[i].type == type)
return g_backends[i].name;
}
return NULL;
}
unsigned int
dctool_family_model (dc_family_t type)
{
for (unsigned int i = 0; i < C_ARRAY_SIZE (g_backends); ++i) {
if (g_backends[i].type == type)
return g_backends[i].model;
}
return 0;
}
void
dctool_event_cb (dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
const dc_event_progress_t *progress = (const dc_event_progress_t *) data;
const dc_event_devinfo_t *devinfo = (const dc_event_devinfo_t *) data;
const dc_event_clock_t *clock = (const dc_event_clock_t *) data;
const dc_event_vendor_t *vendor = (const dc_event_vendor_t *) data;
switch (event) {
case DC_EVENT_WAITING:
message ("Event: waiting for user action\n");
break;
case DC_EVENT_PROGRESS:
message ("Event: progress %3.2f%% (%u/%u)\n",
100.0 * (double) progress->current / (double) progress->maximum,
progress->current, progress->maximum);
break;
case DC_EVENT_DEVINFO:
message ("Event: model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)\n",
devinfo->model, devinfo->model,
devinfo->firmware, devinfo->firmware,
devinfo->serial, devinfo->serial);
break;
case DC_EVENT_CLOCK:
message ("Event: systime=" DC_TICKS_FORMAT ", devtime=%u\n",
clock->systime, clock->devtime);
break;
case DC_EVENT_VENDOR:
message ("Event: vendor=");
for (unsigned int i = 0; i < vendor->size; ++i)
message ("%02X", vendor->data[i]);
message ("\n");
break;
default:
break;
}
}
dc_status_t
dctool_descriptor_search (dc_descriptor_t **out, const char *name, dc_family_t family, unsigned int model)
{
dc_status_t rc = DC_STATUS_SUCCESS;
dc_iterator_t *iterator = NULL;
rc = dc_descriptor_iterator (&iterator);
if (rc != DC_STATUS_SUCCESS) {
ERROR ("Error creating the device descriptor iterator.");
return rc;
}
dc_descriptor_t *descriptor = NULL, *current = NULL;
while ((rc = dc_iterator_next (iterator, &descriptor)) == DC_STATUS_SUCCESS) {
if (name) {
const char *vendor = dc_descriptor_get_vendor (descriptor);
const char *product = dc_descriptor_get_product (descriptor);
size_t n = strlen (vendor);
if (strncasecmp (name, vendor, n) == 0 && name[n] == ' ' &&
strcasecmp (name + n + 1, product) == 0)
{
current = descriptor;
break;
} else if (strcasecmp (name, product) == 0) {
current = descriptor;
break;
}
} else {
if (family == dc_descriptor_get_type (descriptor)) {
if (model == dc_descriptor_get_model (descriptor)) {
// Exact match found. Return immediately.
dc_descriptor_free (current);
current = descriptor;
break;
} else {
// Possible match found. Keep searching for an exact match.
// If no exact match is found, the first match is returned.
if (current == NULL) {
current = descriptor;
descriptor = NULL;
}
}
}
}
dc_descriptor_free (descriptor);
}
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_DONE) {
dc_descriptor_free (current);
dc_iterator_free (iterator);
ERROR ("Error iterating the device descriptors.");
return rc;
}
dc_iterator_free (iterator);
*out = current;
return DC_STATUS_SUCCESS;
}
static unsigned char
hex2dec (unsigned char value)
{
if (value >= '0' && value <= '9')
return value - '0';
else if (value >= 'A' && value <= 'F')
return value - 'A' + 10;
else if (value >= 'a' && value <= 'f')
return value - 'a' + 10;
else
return 0;
}
dc_buffer_t *
dctool_convert_hex2bin (const char *str)
{
// Get the length of the fingerprint data.
size_t nbytes = (str ? strlen (str) / 2 : 0);
if (nbytes == 0)
return NULL;
// Allocate a memory buffer.
dc_buffer_t *buffer = dc_buffer_new (nbytes);
// Convert the hexadecimal string.
for (unsigned int i = 0; i < nbytes; ++i) {
unsigned char msn = hex2dec (str[i * 2 + 0]);
unsigned char lsn = hex2dec (str[i * 2 + 1]);
unsigned char byte = (msn << 4) + lsn;
dc_buffer_append (buffer, &byte, 1);
}
return buffer;
}
void
dctool_file_write (const char *filename, dc_buffer_t *buffer)
{
FILE *fp = NULL;
// Open the file.
if (filename) {
fp = fopen (filename, "wb");
} else {
fp = stdout;
#ifdef _WIN32
// Change from text mode to binary mode.
_setmode (_fileno (fp), _O_BINARY);
#endif
}
if (fp == NULL)
return;
// Write the entire buffer to the file.
fwrite (dc_buffer_get_data (buffer), 1, dc_buffer_get_size (buffer), fp);
// Close the file.
fclose (fp);
}
dc_buffer_t *
dctool_file_read (const char *filename)
{
FILE *fp = NULL;
// Open the file.
if (filename) {
fp = fopen (filename, "rb");
} else {
fp = stdin;
#ifdef _WIN32
// Change from text mode to binary mode.
_setmode (_fileno (fp), _O_BINARY);
#endif
}
if (fp == NULL)
return NULL;
// Allocate a memory buffer.
dc_buffer_t *buffer = dc_buffer_new (0);
// Read the entire file into the buffer.
size_t n = 0;
unsigned char block[1024] = {0};
while ((n = fread (block, 1, sizeof (block), fp)) > 0) {
dc_buffer_append (buffer, block, n);
}
// Close the file.
fclose (fp);
return buffer;
}