libdivecomputer/src/suunto_solution.c
Jef Driesen 4512a0a5d7 Emit a devinfo event when downloading a memory dump
For diagnostics purposes it's often very useful to have the device
information available when downloading a memory dump.
2022-05-23 12:01:42 +02:00

317 lines
9.3 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc, free
#include <libdivecomputer/units.h>
#include "suunto_solution.h"
#include "context-private.h"
#include "device-private.h"
#include "ringbuffer.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &suunto_solution_device_vtable)
#define SZ_MEMORY 256
#define RB_PROFILE_BEGIN 0x020
#define RB_PROFILE_END 0x100
typedef struct suunto_solution_device_t {
dc_device_t base;
dc_iostream_t *iostream;
} suunto_solution_device_t;
static dc_status_t suunto_solution_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t suunto_solution_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static const dc_device_vtable_t suunto_solution_device_vtable = {
sizeof(suunto_solution_device_t),
DC_FAMILY_SUUNTO_SOLUTION,
NULL, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
suunto_solution_device_dump, /* dump */
suunto_solution_device_foreach, /* foreach */
NULL, /* timesync */
NULL /* close */
};
static dc_status_t
suunto_solution_extract_dives (dc_device_t *device, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata);
dc_status_t
suunto_solution_device_open (dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_solution_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (suunto_solution_device_t *) dc_device_allocate (context, &suunto_solution_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->iostream = iostream;
// Set the serial communication protocol (1200 8N2).
status = dc_iostream_configure (device->iostream, 1200, 8, DC_PARITY_NONE, DC_STOPBITS_TWO, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_free;
}
// Set the timeout for receiving data (1000ms).
status = dc_iostream_set_timeout (device->iostream, 1000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_free;
}
// Clear the RTS line.
status = dc_iostream_set_rts (device->iostream, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the DTR/RTS line.");
goto error_free;
}
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
suunto_solution_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_solution_device_t *device = (suunto_solution_device_t*) abstract;
// Allocate the required amount of memory.
if (!dc_buffer_resize (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
unsigned char *data = dc_buffer_get_data (buffer);
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_MEMORY - 1 + 2;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
unsigned char command[3] = {0};
unsigned char answer[3] = {0};
// Assert DTR
status = dc_iostream_set_dtr(device->iostream, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to set the DTR line.");
return status;
}
// Send: 0xFF
command[0] = 0xFF;
dc_iostream_write (device->iostream, command, 1, NULL);
// Receive: 0x3F
status = dc_iostream_read (device->iostream, answer, 1, NULL);
if (status != DC_STATUS_SUCCESS)
return status;
if (answer[0] != 0x3F)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x4D, 0x01, 0x01
command[0] = 0x4D;
command[1] = 0x01;
command[2] = 0x01;
dc_iostream_write (device->iostream, command, 3, NULL);
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
data[0] = 0x00;
for (unsigned int i = 1; i < SZ_MEMORY; ++i) {
// Receive: 0x01, i, data[i]
status = dc_iostream_read (device->iostream, answer, 3, NULL);
if (status != DC_STATUS_SUCCESS)
return status;
if (answer[0] != 0x01 || answer[1] != i)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: i
command[0] = i;
dc_iostream_write (device->iostream, command, 1, NULL);
// Receive: data[i]
status = dc_iostream_read (device->iostream, data + i, 1, NULL);
if (status != DC_STATUS_SUCCESS)
return status;
if (data[i] != answer[2])
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x0D
command[0] = 0x0D;
dc_iostream_write (device->iostream, command, 1, NULL);
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
}
// Receive: 0x02, 0x00, 0x80
status = dc_iostream_read (device->iostream, answer, 3, NULL);
if (status != DC_STATUS_SUCCESS)
return status;
if (answer[0] != 0x02 || answer[1] != 0x00 || answer[2] != 0x80)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x80
command[0] = 0x80;
dc_iostream_write (device->iostream, command, 1, NULL);
// Receive: 0x80
status = dc_iostream_read (device->iostream, answer, 1, NULL);
if (status != DC_STATUS_SUCCESS)
return status;
if (answer[0] != 0x80)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x20
command[0] = 0x20;
dc_iostream_write (device->iostream, command, 1, NULL);
// Receive: 0x3F
status = dc_iostream_read (device->iostream, answer, 1, NULL);
if (status != DC_STATUS_SUCCESS)
return status;
if (answer[0] != 0x3F)
WARNING (abstract->context, "Unexpected answer byte.");
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = 0;
devinfo.firmware = 0;
devinfo.serial = array_convert_bcd2dec (data + 0x1D, 3);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_solution_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = suunto_solution_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
rc = suunto_solution_extract_dives (abstract,
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
static dc_status_t
suunto_solution_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
unsigned char buffer[RB_PROFILE_END - RB_PROFILE_BEGIN] = {0};
// Get the end of the profile ring buffer.
unsigned int eop = data[0x18];
if (eop < RB_PROFILE_BEGIN ||
eop >= RB_PROFILE_END ||
data[eop] != 0x82)
{
return DC_STATUS_DATAFORMAT;
}
// The profile data is stored backwards in the ringbuffer. To locate
// the most recent dive, we start from the end of profile marker and
// traverse the ringbuffer in the opposite direction (forwards).
// Since the profile data is now processed in the "wrong" direction,
// it needs to be reversed again.
unsigned int previous = eop;
unsigned int current = eop;
for (unsigned int i = 0; i < RB_PROFILE_END - RB_PROFILE_BEGIN; ++i) {
// Move forwards through the ringbuffer.
current++;
if (current == RB_PROFILE_END)
current = RB_PROFILE_BEGIN;
// Check for an end of profile marker.
if (data[current] == 0x82)
break;
// Store the current byte into the buffer. By starting at the
// end of the buffer, the data is automatically reversed.
unsigned int idx = RB_PROFILE_END - RB_PROFILE_BEGIN - i - 1;
buffer[idx] = data[current];
// Check for an end of dive marker (of the next dive),
// to find the start of the current dive.
unsigned int peek = ringbuffer_increment (current, 2, RB_PROFILE_BEGIN, RB_PROFILE_END);
if (data[peek] == 0x80) {
unsigned int len = ringbuffer_distance (previous, current, 0, RB_PROFILE_BEGIN, RB_PROFILE_END);
if (callback && !callback (buffer + idx, len, NULL, 0, userdata))
return DC_STATUS_SUCCESS;
previous = current;
}
}
if (data[current] != 0x82)
return DC_STATUS_DATAFORMAT;
return DC_STATUS_SUCCESS;
}