libdivecomputer/src/divesystem_idive.c
Jef Driesen 1c8cd096b5 Integrate the new packet I/O in the backends
Replace the custom packet handling code in the iconhd and ostc3 backends
with the new layered packet I/O, and also integrate it into the idive
and extreme backends.
2023-05-11 16:25:59 +02:00

961 lines
27 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2014 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <stdio.h>
#include "divesystem_idive.h"
#include "context-private.h"
#include "device-private.h"
#include "platform.h"
#include "checksum.h"
#include "array.h"
#include "packet.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &divesystem_idive_device_vtable)
#define ISIX3M(model) ((model) >= 0x21)
#define MAXRETRIES 9
#define MAXPACKET 0xFF
#define START 0x55
#define ACK 0x06
#define WAIT 0x13
#define NAK 0x15
#define CMD_IDIVE_ID 0x10
#define CMD_IDIVE_RANGE 0x98
#define CMD_IDIVE_HEADER 0xA0
#define CMD_IDIVE_SAMPLE 0xA8
#define CMD_IX3M_ID 0x11
#define CMD_IX3M_RANGE 0x78
#define CMD_IX3M_HEADER 0x79
#define CMD_IX3M_SAMPLE 0x7A
#define CMD_IX3M_TIMESYNC 0x13
#define CMD_IX3M_BOOTLOADER 0x0A
#define BOOTLOADER_PROBE 0x78
#define BOOTLOADER_UPLOAD_A 0x40
#define BOOTLOADER_UPLOAD_B 0x23
#define BOOTLOADER_ACK 0x46
#define ERR_INVALID_CMD 0x10
#define ERR_INVALID_LENGTH 0x20
#define ERR_INVALID_DATA 0x30
#define ERR_UNSUPPORTED 0x40
#define ERR_UNAVAILABLE 0x58
#define ERR_UNREADABLE 0x5F
#define ERR_BUSY 0x60
#define NSTEPS 1000
#define STEP(i,n) (NSTEPS * (i) / (n))
#define EPOCH 1199145600 /* 2008-01-01 00:00:00 */
#define TZ_IDX_UNCHANGED 0xFF
typedef struct divesystem_idive_command_t {
unsigned char cmd;
unsigned int size;
} divesystem_idive_command_t;
typedef struct divesystem_idive_commands_t {
divesystem_idive_command_t id;
divesystem_idive_command_t range;
divesystem_idive_command_t header;
divesystem_idive_command_t sample;
unsigned int nsamples;
} divesystem_idive_commands_t;
typedef struct divesystem_idive_signature_t {
const char *name;
unsigned int delay;
} divesystem_idive_signature_t;
typedef struct divesystem_idive_device_t {
dc_device_t base;
dc_iostream_t *iostream;
unsigned char fingerprint[4];
unsigned int model;
} divesystem_idive_device_t;
static dc_status_t divesystem_idive_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t divesystem_idive_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t divesystem_idive_device_timesync (dc_device_t *abstract, const dc_datetime_t *datetime);
static dc_status_t divesystem_idive_device_close (dc_device_t *abstract);
static const dc_device_vtable_t divesystem_idive_device_vtable = {
sizeof(divesystem_idive_device_t),
DC_FAMILY_DIVESYSTEM_IDIVE,
divesystem_idive_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
NULL, /* dump */
divesystem_idive_device_foreach, /* foreach */
divesystem_idive_device_timesync, /* timesync */
divesystem_idive_device_close /* close */
};
static const divesystem_idive_commands_t idive = {
{CMD_IDIVE_ID, 0x0A},
{CMD_IDIVE_RANGE, 0x04},
{CMD_IDIVE_HEADER, 0x32},
{CMD_IDIVE_SAMPLE, 0x2A},
1,
};
static const divesystem_idive_commands_t ix3m = {
{CMD_IX3M_ID, 0x1A},
{CMD_IX3M_RANGE, 0x04},
{CMD_IX3M_HEADER, 0x36},
{CMD_IX3M_SAMPLE, 0x36},
1,
};
static const divesystem_idive_commands_t ix3m_apos4 = {
{CMD_IX3M_ID, 0x1A},
{CMD_IX3M_RANGE, 0x04},
{CMD_IX3M_HEADER, 0x36},
{CMD_IX3M_SAMPLE, 0x40},
3,
};
static const divesystem_idive_signature_t signatures[] = {
{"dsh01", 50}, // IX3M GPS
{"dsh30", 50}, // IX3M Pro
{"dsh20", 5}, // iDive Sport
{"dsh23", 5}, // iDive Color
{"acx", 5}, // WPT
};
dc_status_t
divesystem_idive_device_open (dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream, unsigned int model)
{
dc_status_t status = DC_STATUS_SUCCESS;
divesystem_idive_device_t *device = NULL;
dc_transport_t transport = dc_iostream_get_transport (iostream);
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (divesystem_idive_device_t *) dc_device_allocate (context, &divesystem_idive_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
memset (device->fingerprint, 0, sizeof (device->fingerprint));
device->model = model;
// Create the packet stream.
if (transport == DC_TRANSPORT_BLE) {
status = dc_packet_open (&device->iostream, context, iostream, 244, 244);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to create the packet stream.");
goto error_free;
}
} else {
device->iostream = iostream;
}
// Set the serial communication protocol (115200 8N1).
status = dc_iostream_configure (device->iostream, 115200, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_free_iostream;
}
// Set the timeout for receiving data (1000ms).
status = dc_iostream_set_timeout (device->iostream, 1000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_free_iostream;
}
// Make sure everything is in a sane state.
dc_iostream_sleep (device->iostream, 300);
dc_iostream_purge (device->iostream, DC_DIRECTION_ALL);
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
error_free_iostream:
if (transport == DC_TRANSPORT_BLE) {
dc_iostream_close (device->iostream);
}
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
divesystem_idive_device_close (dc_device_t *abstract)
{
divesystem_idive_device_t *device = (divesystem_idive_device_t *) abstract;
// Close the packet stream.
if (dc_iostream_get_transport (device->iostream) == DC_TRANSPORT_BLE) {
return dc_iostream_close (device->iostream);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
divesystem_idive_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
divesystem_idive_device_t *device = (divesystem_idive_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
divesystem_idive_send (divesystem_idive_device_t *device, const unsigned char command[], unsigned int csize)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
unsigned char packet[MAXPACKET + 4];
unsigned short crc = 0;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
if (csize < 1 || csize > MAXPACKET)
return DC_STATUS_INVALIDARGS;
// Setup the data packet
packet[0] = START;
packet[1] = csize;
memcpy(packet + 2, command, csize);
crc = checksum_crc16_ccitt (packet, csize + 2, 0xffff, 0x0000);
packet[csize + 2] = (crc >> 8) & 0xFF;
packet[csize + 3] = (crc ) & 0xFF;
// Send the data packet.
status = dc_iostream_write (device->iostream, packet, csize + 4, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
divesystem_idive_receive (divesystem_idive_device_t *device, unsigned char answer[], unsigned int *asize)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
unsigned char packet[MAXPACKET + 4];
if (asize == NULL || *asize < MAXPACKET) {
ERROR (abstract->context, "Invalid arguments.");
return DC_STATUS_INVALIDARGS;
}
// Read the packet start byte.
while (1) {
status = dc_iostream_read (device->iostream, packet + 0, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the packet start byte.");
return status;
}
if (packet[0] == START)
break;
}
// Read the packet length.
status = dc_iostream_read (device->iostream, packet + 1, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the packet length.");
return status;
}
unsigned int len = packet[1];
if (len < 2 || len > MAXPACKET) {
ERROR (abstract->context, "Invalid packet length.");
return DC_STATUS_PROTOCOL;
}
// Read the packet payload and checksum.
status = dc_iostream_read (device->iostream, packet + 2, len + 2, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the packet payload and checksum.");
return status;
}
// Verify the checksum.
unsigned short crc = array_uint16_be (packet + len + 2);
unsigned short ccrc = checksum_crc16_ccitt (packet, len + 2, 0xffff, 0x0000);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected packet checksum.");
return DC_STATUS_PROTOCOL;
}
memcpy(answer, packet + 2, len);
*asize = len;
return DC_STATUS_SUCCESS;
}
static dc_status_t
divesystem_idive_packet (divesystem_idive_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize, unsigned int *errorcode)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
unsigned char packet[MAXPACKET] = {0};
unsigned int length = sizeof(packet);
unsigned int errcode = 0;
// Send the command.
status = divesystem_idive_send (device, command, csize);
if (status != DC_STATUS_SUCCESS) {
goto error;
}
// Receive the answer.
status = divesystem_idive_receive (device, packet, &length);
if (status != DC_STATUS_SUCCESS) {
goto error;
}
// Verify the command byte.
if (packet[0] != command[0]) {
ERROR (abstract->context, "Unexpected packet header.");
status = DC_STATUS_PROTOCOL;
goto error;
}
// Verify the ACK/NAK byte.
unsigned int type = packet[length - 1];
if (type != ACK && type != NAK) {
ERROR (abstract->context, "Unexpected ACK/NAK byte.");
status = DC_STATUS_PROTOCOL;
goto error;
}
// Verify the length of the packet.
unsigned int expected = (type == ACK ? asize : 1) + 2;
if (length != expected) {
ERROR (abstract->context, "Unexpected packet length.");
status = DC_STATUS_PROTOCOL;
goto error;
}
// Get the error code from a NAK packet.
if (type == NAK) {
errcode = packet[1];
ERROR (abstract->context, "Received NAK packet with error code %02x.", errcode);
status = DC_STATUS_PROTOCOL;
goto error;
}
if (length > 2) {
memcpy (answer, packet + 1, length - 2);
}
error:
if (errorcode) {
*errorcode = errcode;
}
return status;
}
static dc_status_t
divesystem_idive_transfer (divesystem_idive_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize, unsigned int *errorcode)
{
dc_status_t status = DC_STATUS_SUCCESS;
unsigned int errcode = 0;
unsigned int nretries = 0;
while ((status = divesystem_idive_packet (device, command, csize, answer, asize, &errcode)) != DC_STATUS_SUCCESS) {
// Automatically discard a corrupted packet,
// and request a new one.
if (status != DC_STATUS_PROTOCOL && status != DC_STATUS_TIMEOUT)
break;
// Abort if the device reports a fatal error.
if (errcode && errcode != ERR_BUSY)
break;
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
break;
// Delay the next attempt.
dc_iostream_sleep (device->iostream, 100);
}
if (errorcode) {
*errorcode = errcode;
}
return status;
}
static dc_status_t
divesystem_idive_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_status_t rc = DC_STATUS_SUCCESS;
divesystem_idive_device_t *device = (divesystem_idive_device_t *) abstract;
unsigned char packet[MAXPACKET - 2];
unsigned int errcode = 0;
const divesystem_idive_commands_t *commands = &idive;
if (ISIX3M(device->model)) {
commands = &ix3m;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
unsigned char cmd_id[] = {commands->id.cmd, 0xED};
rc = divesystem_idive_transfer (device, cmd_id, sizeof(cmd_id), packet, commands->id.size, &errcode);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = array_uint16_le (packet);
devinfo.firmware = array_uint32_le (packet + 2);
devinfo.serial = array_uint32_le (packet + 6);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Emit a vendor event.
dc_event_vendor_t vendor;
vendor.data = packet;
vendor.size = commands->id.size;
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
if (ISIX3M(device->model)) {
// Detect the APOS4 firmware.
unsigned int apos4 = (devinfo.firmware / 10000000) >= 4;
if (apos4) {
commands = &ix3m_apos4;
}
}
unsigned char cmd_range[] = {commands->range.cmd, 0x8D};
rc = divesystem_idive_transfer (device, cmd_range, sizeof(cmd_range), packet, commands->range.size, &errcode);
if (rc != DC_STATUS_SUCCESS) {
if (errcode == ERR_UNAVAILABLE) {
return DC_STATUS_SUCCESS; // No dives found.
} else {
return rc;
}
}
// Get the range of the available dive numbers.
unsigned int first = array_uint16_le (packet + 0);
unsigned int last = array_uint16_le (packet + 2);
if (first > last) {
ERROR(abstract->context, "Invalid dive numbers.");
return DC_STATUS_DATAFORMAT;
}
// Calculate the number of dives.
unsigned int ndives = last - first + 1;
// Update and emit a progress event.
progress.maximum = ndives * NSTEPS;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
dc_buffer_t *buffer = dc_buffer_new(0);
if (buffer == NULL) {
return DC_STATUS_NOMEMORY;
}
for (unsigned int i = 0; i < ndives; ++i) {
unsigned int number = last - i;
unsigned char cmd_header[] = {commands->header.cmd,
(number ) & 0xFF,
(number >> 8) & 0xFF};
rc = divesystem_idive_transfer (device, cmd_header, sizeof(cmd_header), packet, commands->header.size, &errcode);
if (rc != DC_STATUS_SUCCESS) {
if (errcode == ERR_UNREADABLE) {
WARNING(abstract->context, "Skipped unreadable dive!");
continue;
} else {
dc_buffer_free(buffer);
return rc;
}
}
if (memcmp(packet + 7, device->fingerprint, sizeof(device->fingerprint)) == 0)
break;
unsigned int nsamples = array_uint16_le (packet + 1);
// Update and emit a progress event.
progress.current = i * NSTEPS + STEP(1, nsamples + 1);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
dc_buffer_clear(buffer);
dc_buffer_reserve(buffer, commands->header.size + commands->sample.size * nsamples);
if (!dc_buffer_append(buffer, packet, commands->header.size)) {
ERROR (abstract->context, "Insufficient buffer space available.");
dc_buffer_free(buffer);
return DC_STATUS_NOMEMORY;
}
for (unsigned int j = 0; j < nsamples; j += commands->nsamples) {
unsigned int idx = j + 1;
unsigned char cmd_sample[] = {commands->sample.cmd,
(idx ) & 0xFF,
(idx >> 8) & 0xFF};
rc = divesystem_idive_transfer (device, cmd_sample, sizeof(cmd_sample), packet, commands->sample.size * commands->nsamples, &errcode);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free(buffer);
return rc;
}
// If the number of samples is not an exact multiple of the
// number of samples per packet, then the last packet
// appears to contain garbage data. Ignore those samples.
unsigned int n = commands->nsamples;
if (j + n > nsamples) {
n = nsamples - j;
}
// Update and emit a progress event.
progress.current = i * NSTEPS + STEP(j + n + 1, nsamples + 1);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
if (!dc_buffer_append(buffer, packet, commands->sample.size * n)) {
ERROR (abstract->context, "Insufficient buffer space available.");
dc_buffer_free(buffer);
return DC_STATUS_NOMEMORY;
}
}
unsigned char *data = dc_buffer_get_data(buffer);
unsigned int size = dc_buffer_get_size(buffer);
if (callback && !callback (data, size, data + 7, sizeof(device->fingerprint), userdata)) {
dc_buffer_free (buffer);
return DC_STATUS_SUCCESS;
}
}
dc_buffer_free(buffer);
return DC_STATUS_SUCCESS;
}
static dc_status_t
divesystem_idive_device_timesync (dc_device_t *abstract, const dc_datetime_t *datetime)
{
dc_status_t rc = DC_STATUS_SUCCESS;
divesystem_idive_device_t *device = (divesystem_idive_device_t *) abstract;
unsigned int errcode = 0;
static const signed char tz_array[] = {
-12, 0, /* UTC-12 */
-11, 0, /* UTC-11 */
-10, 0, /* UTC-10 */
-9, 30, /* UTC-9:30 */
-9, 0, /* UTC-9 */
-8, 0, /* UTC-8 */
-7, 0, /* UTC-7 */
-6, 0, /* UTC-6 */
-5, 0, /* UTC-5 */
-4, 30, /* UTC-4:30 */
-4, 0, /* UTC-4 */
-3, 30, /* UTC-3:30 */
-3, 0, /* UTC-3 */
-2, 0, /* UTC-2 */
-1, 0, /* UTC-1 */
0, 0, /* UTC */
1, 0, /* UTC+1 */
2, 0, /* UTC+2 */
3, 0, /* UTC+3 */
3, 30, /* UTC+3:30 */
4, 0, /* UTC+4 */
4, 30, /* UTC+4:30 */
5, 0, /* UTC+5 */
5, 30, /* UTC+5:30 */
5, 45, /* UTC+5:45 */
6, 0, /* UTC+6 */
6, 30, /* UTC+6:30 */
7, 0, /* UTC+7 */
8, 0, /* UTC+8 */
8, 45, /* UTC+8:45 */
9, 0, /* UTC+9 */
9, 30, /* UTC+9:30 */
9, 45, /* UTC+9:45 */
10, 0, /* UTC+10 */
10, 30, /* UTC+10:30 */
11, 0, /* UTC+11 */
11, 30, /* UTC+11:30 */
12, 0, /* UTC+12 */
12, 45, /* UTC+12:45 */
13, 0, /* UTC+13 */
13, 45, /* UTC+13:45 */
14, 0 /* UTC+14 */
};
if (!ISIX3M(device->model)) {
return DC_STATUS_UNSUPPORTED;
}
// Get the UTC timestamp.
dc_ticks_t timestamp = dc_datetime_mktime(datetime);
if (timestamp == -1) {
ERROR (abstract->context, "Invalid date/time value specified.");
return DC_STATUS_INVALIDARGS;
}
// Adjust the epoch.
timestamp -= EPOCH;
// Find the timezone index.
size_t tz_idx = C_ARRAY_SIZE(tz_array);
for (size_t i = 0; i < C_ARRAY_SIZE(tz_array); i += 2) {
int timezone = tz_array[i] * 3600;
if (timezone < 0) {
timezone -= tz_array[i + 1] * 60;
} else {
timezone += tz_array[i + 1] * 60;
}
if (timezone == datetime->timezone) {
tz_idx = i;
break;
}
}
if (tz_idx >= C_ARRAY_SIZE(tz_array)) {
ERROR (abstract->context, "Invalid timezone value specified.");
return DC_STATUS_INVALIDARGS;
}
// Adjust the timezone index.
tz_idx /= 2;
// Send the command.
unsigned char command[] = {
CMD_IX3M_TIMESYNC,
(timestamp >> 0) & 0xFF,
(timestamp >> 8) & 0xFF,
(timestamp >> 16) & 0xFF,
(timestamp >> 24) & 0xFF,
tz_idx, // Home timezone
TZ_IDX_UNCHANGED}; // Travel timezone
rc = divesystem_idive_transfer (device, command, sizeof(command), NULL, 0, &errcode);
if (rc != DC_STATUS_SUCCESS) {
if (errcode == ERR_INVALID_LENGTH || errcode == ERR_INVALID_DATA) {
// Fallback to the variant without the second timezone if the
// firmware doesn't support two timezones (ERR_INVALID_LENGTH) or
// leaving the timezone unchanged (ERR_INVALID_DATA).
rc = divesystem_idive_transfer (device, command, sizeof(command) - 1, NULL, 0, &errcode);
if (rc != DC_STATUS_SUCCESS) {
return rc;
}
} else {
return rc;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
divesystem_idive_firmware_readfile (dc_buffer_t *buffer, dc_context_t *context, const char *filename)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_buffer_t *tmp = NULL;
FILE *fp = NULL;
if (!dc_buffer_clear (buffer)) {
ERROR (context, "Invalid arguments.");
return DC_STATUS_INVALIDARGS;
}
// Allocate a temporary buffer.
tmp = dc_buffer_new (0x20000);
if (tmp == NULL) {
ERROR (context, "Failed to allocate memory.");
status = DC_STATUS_NOMEMORY;
goto error_exit;
}
// Open the file.
fp = fopen (filename, "rb");
if (fp == NULL) {
ERROR (context, "Failed to open the file.");
status = DC_STATUS_IO;
goto error_free;
}
// Read the entire file into the buffer.
size_t n = 0;
unsigned char block[4096] = {0};
while ((n = fread (block, 1, sizeof (block), fp)) > 0) {
if (!dc_buffer_append (tmp, block, n)) {
ERROR (context, "Insufficient buffer space available.");
status = DC_STATUS_NOMEMORY;
goto error_close;
}
}
// Resize the output buffer.
size_t nbytes = dc_buffer_get_size (tmp);
if (!dc_buffer_resize (buffer, nbytes / 2)) {
ERROR (context, "Insufficient buffer space available.");
status = DC_STATUS_NOMEMORY;
goto error_close;
}
// Convert to binary data.
int rc = array_convert_hex2bin (
dc_buffer_get_data (tmp), dc_buffer_get_size (tmp),
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer));
if (rc != 0) {
ERROR (context, "Unexpected data format.");
status = DC_STATUS_DATAFORMAT;
goto error_close;
}
error_close:
fclose (fp);
error_free:
dc_buffer_free (tmp);
error_exit:
return status;
}
static dc_status_t
divesystem_idive_firmware_send (divesystem_idive_device_t *device, const divesystem_idive_signature_t *signature, const unsigned char data[], size_t size)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
unsigned int nretries = 0;
while (1) {
// Send the frame.
status = dc_iostream_write (device->iostream, data, size, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the frame.");
return status;
}
// Read the response until an ACK or NAK byte is received.
unsigned int state = 0;
while (state == 0) {
// Receive the response.
unsigned char response = 0;
status = dc_iostream_read (device->iostream, &response, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the response.");
return status;
}
// Process the response.
switch (response) {
case ACK:
case NAK:
state = response;
break;
case WAIT:
dc_iostream_sleep (device->iostream, signature->delay);
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
case 'G':
case 'H':
case 'K':
case 'X':
break;
default:
WARNING (abstract->context, "Unexpected response byte received (%02x)", response);
break;
}
}
// Exit if ACK received.
if (state == ACK)
break;
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES) {
ERROR (abstract->context, "Maximum number of retries reached.");
return DC_STATUS_PROTOCOL;
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
divesystem_idive_device_fwupdate (dc_device_t *abstract, const char *filename)
{
dc_status_t status = DC_STATUS_SUCCESS;
divesystem_idive_device_t *device = (divesystem_idive_device_t *) abstract;
unsigned int errcode = 0;
// Allocate memory for the firmware data.
dc_buffer_t *buffer = dc_buffer_new (0);
if (buffer == NULL) {
ERROR (abstract->context, "Failed to allocate memory for the firmware data.");
status = DC_STATUS_NOMEMORY;
goto error_exit;
}
// Read the firmware file.
status = divesystem_idive_firmware_readfile (buffer, abstract->context, filename);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the firmware file.");
goto error_free;
}
// Cache the data and size.
const unsigned char *data = dc_buffer_get_data (buffer);
size_t size = dc_buffer_get_size (buffer);
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Activate the bootloader.
const unsigned char bootloader[] = {CMD_IX3M_BOOTLOADER, 0xC9, 0x4B};
status = divesystem_idive_transfer (device, bootloader, sizeof (bootloader), NULL, 0, &errcode);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to activate the bootloader.");
goto error_free;
}
// Give the device some time to enter the bootloader.
dc_iostream_sleep (device->iostream, 2000);
// Wait for the bootloader.
const divesystem_idive_signature_t *signature = NULL;
while (signature == NULL) {
// Discard garbage data.
dc_iostream_purge (device->iostream, DC_DIRECTION_INPUT);
// Probe for the bootloader.
const unsigned char probe[] = {BOOTLOADER_PROBE};
status = dc_iostream_write (device->iostream, probe, sizeof (probe), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to activate the bootloader.");
goto error_free;
}
// Read the signature string.
size_t n = 0;
unsigned char name[5] = {0};
status = dc_iostream_read (device->iostream, name, sizeof (name), &n);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_TIMEOUT) {
ERROR (abstract->context, "Failed to read the signature string.");
goto error_free;
}
// Verify the signature string.
for (size_t i = 0; i < C_ARRAY_SIZE (signatures); ++i) {
if (n == strlen (signatures[i].name) && memcmp (name, signatures[i].name, n) == 0) {
signature = signatures + i;
break;
}
}
}
// Send the start upload command.
const unsigned char upload[] = {BOOTLOADER_UPLOAD_A, BOOTLOADER_UPLOAD_B};
status = dc_iostream_write (device->iostream, upload, sizeof(upload), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the start upload command.");
goto error_free;
}
// Receive the ack.
unsigned char ack[1] = {0};
status = dc_iostream_read (device->iostream, ack, sizeof(ack), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the ack byte.");
goto error_free;
}
// Verify the ack.
if (ack[0] != BOOTLOADER_ACK) {
ERROR (abstract->context, "Invalid ack byte (%02x).", ack[0]);
status = DC_STATUS_PROTOCOL;
goto error_free;
}
// Wait before sending the firmware data.
dc_iostream_sleep (device->iostream, 100);
// Upload the firmware.
unsigned int offset = 0;
while (offset + 2 <= size) {
// Get the number of bytes in the current frame.
unsigned int len = array_uint16_be (data + offset) + 2;
if (offset + len > size) {
ERROR (abstract->context, "Invalid frame size (%u %u " DC_PRINTF_SIZE ")", offset, len, size);
status = DC_STATUS_DATAFORMAT;
goto error_free;
}
// Send the frame.
status = divesystem_idive_firmware_send (device, signature, data + offset, len);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the frame.");
goto error_free;
}
// Update and emit a progress event.
progress.current += len;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
offset += len;
}
error_free:
dc_buffer_free (buffer);
error_exit:
return status;
}