libdivecomputer/src/shearwater_petrel.c
Jef Driesen 25bd1f9853 Add support for time synchronization
Add time synchronisation for the Shearwater dive computers. All models
support setting the local time. Only the Teric has basic support for
time zones, and can set UTC time with a timezone offset.

Co-authored-by: Michael Keller <github@ike.ch>
2023-07-05 15:43:12 +02:00

379 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2013 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include "shearwater_petrel.h"
#include "shearwater_common.h"
#include "context-private.h"
#include "device-private.h"
#include "platform.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &shearwater_petrel_device_vtable)
#define MANIFEST_ADDR 0xE0000000
#define MANIFEST_SIZE 0x600
#define DIVE_SIZE 0xFFFFFF
#define RECORD_SIZE 0x20
#define RECORD_COUNT (MANIFEST_SIZE / RECORD_SIZE)
typedef struct shearwater_petrel_device_t {
shearwater_common_device_t base;
unsigned char fingerprint[4];
} shearwater_petrel_device_t;
static dc_status_t shearwater_petrel_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t shearwater_petrel_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t shearwater_petrel_device_timesync (dc_device_t *abstract, const dc_datetime_t *datetime);
static dc_status_t shearwater_petrel_device_close (dc_device_t *abstract);
static const dc_device_vtable_t shearwater_petrel_device_vtable = {
sizeof(shearwater_petrel_device_t),
DC_FAMILY_SHEARWATER_PETREL,
shearwater_petrel_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
NULL, /* dump */
shearwater_petrel_device_foreach, /* foreach */
shearwater_petrel_device_timesync,
shearwater_petrel_device_close /* close */
};
static unsigned int
str2num (unsigned char data[], unsigned int size, unsigned int offset)
{
unsigned int value = 0;
for (unsigned int i = offset; i < size; ++i) {
if (data[i] < '0' || data[i] > '9')
break;
value *= 10;
value += data[i] - '0';
}
return value;
}
dc_status_t
shearwater_petrel_device_open (dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream)
{
dc_status_t status = DC_STATUS_SUCCESS;
shearwater_petrel_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (shearwater_petrel_device_t *) dc_device_allocate (context, &shearwater_petrel_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Setup the device.
status = shearwater_common_setup (&device->base, context, iostream);
if (status != DC_STATUS_SUCCESS) {
goto error_free;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
shearwater_petrel_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
shearwater_common_device_t *device = (shearwater_common_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Shutdown the device.
unsigned char request[] = {0x2E, 0x90, 0x20, 0x00};
rc = shearwater_common_transfer (device, request, sizeof (request), NULL, 0, NULL);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
static dc_status_t
shearwater_petrel_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
shearwater_petrel_device_t *device = (shearwater_petrel_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_petrel_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
shearwater_petrel_device_t *device = (shearwater_petrel_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Enable progress notifications.
unsigned int current = 0, maximum = 0;
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Read the serial number.
unsigned char rsp_serial[8] = {0};
rc = shearwater_common_rdbi (&device->base, ID_SERIAL, rsp_serial, sizeof(rsp_serial));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the serial number.");
return rc;
}
// Convert to a number.
unsigned char serial[4] = {0};
if (array_convert_hex2bin (rsp_serial, sizeof(rsp_serial), serial, sizeof (serial)) != 0 ) {
ERROR (abstract->context, "Failed to convert the serial number.");
return DC_STATUS_DATAFORMAT;
}
// Read the firmware version.
unsigned char rsp_firmware[11] = {0};
rc = shearwater_common_rdbi (&device->base, ID_FIRMWARE, rsp_firmware, sizeof(rsp_firmware));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the firmware version.");
return rc;
}
// Convert to a number.
unsigned int firmware = str2num (rsp_firmware, sizeof(rsp_firmware), 1);
// Read the hardware type.
unsigned char rsp_hardware[2] = {0};
rc = shearwater_common_rdbi (&device->base, ID_HARDWARE, rsp_hardware, sizeof(rsp_hardware));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the hardware type.");
return rc;
}
// Convert and map to the model number.
unsigned int hardware = array_uint16_be (rsp_hardware);
unsigned int model = shearwater_common_get_model (&device->base, hardware);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = model;
devinfo.firmware = firmware;
devinfo.serial = array_uint32_be (serial);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Read the logbook type
unsigned char rsp_logupload[9] = {0};
rc = shearwater_common_rdbi (&device->base, ID_LOGUPLOAD, rsp_logupload, sizeof(rsp_logupload));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the logbook type.");
return rc;
}
unsigned int base_addr = array_uint32_be (rsp_logupload + 1);
switch (base_addr) {
case 0xDD000000: // Predator - we shouldn't get here, we could give up or we can try 0xC0000000
case 0xC0000000: // Predator-Like Format (what we used to call the Petrel format)
case 0x90000000: // some firmware versions supported an earlier version of PNF without final record
// use the Predator-Like Format instead
base_addr = 0xC0000000;
break;
case 0x80000000: // new Petrel Native Format with final record
// that's the correct address
break;
default: // unknown format
ERROR (abstract->context, "Unknown logbook format %08x", base_addr);
return DC_STATUS_DATAFORMAT;
}
// Allocate memory buffers for the manifests.
dc_buffer_t *buffer = dc_buffer_new (MANIFEST_SIZE);
dc_buffer_t *manifests = dc_buffer_new (MANIFEST_SIZE);
if (buffer == NULL || manifests == NULL) {
ERROR (abstract->context, "Insufficient buffer space available.");
dc_buffer_free (buffer);
dc_buffer_free (manifests);
return DC_STATUS_NOMEMORY;
}
// Read the manifest pages
while (1) {
// Update the progress state.
// Assume the worst case scenario of a full manifest, and adjust the
// value with the actual number of dives after the manifest has been
// processed.
maximum += 1 + RECORD_COUNT;
// Download a manifest.
progress.current = NSTEPS * current;
progress.maximum = NSTEPS * maximum;
rc = shearwater_common_download (&device->base, buffer, MANIFEST_ADDR, MANIFEST_SIZE, 0, &progress);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to download the manifest.");
dc_buffer_free (buffer);
dc_buffer_free (manifests);
return rc;
}
// Cache the buffer pointer and size.
unsigned char *data = dc_buffer_get_data (buffer);
unsigned int size = dc_buffer_get_size (buffer);
// Process the records in the manifest.
unsigned int count = 0, deleted = 0;
unsigned int offset = 0;
while (offset < size) {
// Check for a valid dive header.
unsigned int header = array_uint16_be (data + offset);
if (header == 0x5A23) {
// this is a deleted dive; keep looking
offset += RECORD_SIZE;
deleted++;
continue;
}
if (header != 0xA5C4)
break;
// Check the fingerprint data.
if (memcmp (data + offset + 4, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
offset += RECORD_SIZE;
count++;
}
// Update the progress state.
current += 1;
maximum -= RECORD_COUNT - count - deleted;
// Append the manifest records to the main buffer.
if (!dc_buffer_append (manifests, data, count * RECORD_SIZE)) {
ERROR (abstract->context, "Insufficient buffer space available.");
dc_buffer_free (buffer);
dc_buffer_free (manifests);
return DC_STATUS_NOMEMORY;
}
// Stop downloading manifest if there are no more records.
if (count + deleted != RECORD_COUNT)
break;
}
// Update and emit a progress event.
progress.current = NSTEPS * current;
progress.maximum = NSTEPS * maximum;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Cache the buffer pointer and size.
unsigned char *data = dc_buffer_get_data (manifests);
unsigned int size = dc_buffer_get_size (manifests);
unsigned int offset = 0;
while (offset < size) {
// skip deleted dives
if (array_uint16_be(data + offset) == 0x5A23) {
offset += RECORD_SIZE;
continue;
}
// Get the address of the dive.
unsigned int address = array_uint32_be (data + offset + 20);
// Download the dive.
progress.current = NSTEPS * current;
progress.maximum = NSTEPS * maximum;
rc = shearwater_common_download (&device->base, buffer, base_addr + address, DIVE_SIZE, 1, &progress);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to download the dive.");
dc_buffer_free (buffer);
dc_buffer_free (manifests);
return rc;
}
// Update the progress state.
current += 1;
unsigned char *buf = dc_buffer_get_data (buffer);
unsigned int len = dc_buffer_get_size (buffer);
if (callback && !callback (buf, len, buf + 12, sizeof (device->fingerprint), userdata))
break;
offset += RECORD_SIZE;
}
// Update and emit a progress event.
progress.current = NSTEPS * current;
progress.maximum = NSTEPS * maximum;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
dc_buffer_free (manifests);
dc_buffer_free (buffer);
return rc;
}
static dc_status_t
shearwater_petrel_device_timesync (dc_device_t *abstract, const dc_datetime_t *datetime)
{
dc_status_t status = DC_STATUS_SUCCESS;
shearwater_common_device_t *device = (shearwater_common_device_t *) abstract;
// Read the hardware type.
unsigned char rsp_hardware[2] = {0};
status = shearwater_common_rdbi (device, ID_HARDWARE, rsp_hardware, sizeof(rsp_hardware));
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the hardware type.");
return status;
}
// Convert and map to the model number.
unsigned int hardware = array_uint16_be (rsp_hardware);
unsigned int model = shearwater_common_get_model (device, hardware);
if (model == TERIC) {
return shearwater_common_timesync_utc (device, datetime);
} else {
return shearwater_common_timesync_local (device, datetime);
}
}