libdivecomputer/src/cochran_commander.c
Jef Driesen 84563c6303 Refactor the internal serial and IrDA api.
The low level serial and IrDA functions are modified to:

 - Use the libdivecomputer namespace prefix.

 - Return a more detailed status code instead of the zero on success and
   negative on error return value. This will allow to return more
   fine-grained error codes.

 - The read and write functions have an additional output parameter to
   return the actual number of bytes transferred. Since these functions
   are not atomic, some data might still be transferred successfully if
   an error occurs.

The dive computer backends are updated to use the new api.
2016-05-10 11:34:57 +02:00

888 lines
27 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2014 John Van Ostrand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy, memcmp
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include <libdivecomputer/cochran.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "array.h"
#define C_ARRAY_SIZE(array) (sizeof (array) / sizeof *(array))
#define COCHRAN_MODEL_COMMANDER_AIR_NITROX 0
#define COCHRAN_MODEL_EMC_14 1
#define COCHRAN_MODEL_EMC_16 2
#define COCHRAN_MODEL_EMC_20 3
typedef enum cochran_endian_t {
ENDIAN_LE,
ENDIAN_BE,
} cochran_endian_t;
typedef struct cochran_commander_model_t {
unsigned char id[8 + 1];
unsigned int model;
} cochran_commander_model_t;
typedef struct cochran_data_t {
unsigned char config[1024];
unsigned char *logbook;
unsigned char *sample;
unsigned short int dive_count;
int fp_dive_num;
unsigned int logbook_size;
unsigned int sample_data_offset;
unsigned int sample_size;
} cochran_data_t;
typedef struct cochran_device_layout_t {
unsigned int model;
unsigned int address_bits;
cochran_endian_t endian;
unsigned int baudrate;
// Config data.
unsigned int cf_dive_count;
unsigned int cf_last_log;
unsigned int cf_last_interdive;
unsigned int cf_serial_number;
// Logbook ringbuffer.
unsigned int rb_logbook_begin;
unsigned int rb_logbook_end;
unsigned int rb_logbook_entry_size;
unsigned int rb_logbook_entry_count;
// Profile ringbuffer.
unsigned int rb_profile_begin;
unsigned int rb_profile_end;
// Profile pointers.
unsigned int pt_profile_pre;
unsigned int pt_profile_begin;
unsigned int pt_profile_end;
} cochran_device_layout_t;
typedef struct cochran_commander_device_t {
dc_device_t base;
dc_serial_t *port;
const cochran_device_layout_t *layout;
unsigned char id[67];
unsigned char fingerprint[6];
} cochran_commander_device_t;
static dc_status_t cochran_commander_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size);
static dc_status_t cochran_commander_device_read (dc_device_t *device, unsigned int address, unsigned char data[], unsigned int size);
static dc_status_t cochran_commander_device_dump (dc_device_t *device, dc_buffer_t *data);
static dc_status_t cochran_commander_device_foreach (dc_device_t *device, dc_dive_callback_t callback, void *userdata);
static dc_status_t cochran_commander_device_close (dc_device_t *device);
static const dc_device_vtable_t cochran_commander_device_vtable = {
sizeof (cochran_commander_device_t),
DC_FAMILY_COCHRAN_COMMANDER,
cochran_commander_device_set_fingerprint,/* set_fingerprint */
cochran_commander_device_read, /* read */
NULL, /* write */
cochran_commander_device_dump, /* dump */
cochran_commander_device_foreach, /* foreach */
cochran_commander_device_close /* close */
};
// Cochran Commander Nitrox
static const cochran_device_layout_t cochran_cmdr_device_layout = {
COCHRAN_MODEL_COMMANDER_AIR_NITROX, // model
24, // address_bits
ENDIAN_BE, // endian
115200, // baudrate
0x046, // cf_dive_count
0x06E, // cf_last_log
0x200, // cf_last_interdive
0x0AA, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
256, // rb_logbook_entry_size
512, // rb_logbook_entry_count
0x00020000, // rb_profile_begin
0x00100000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
128, // pt_profile_end
};
// Cochran EMC-14
static const cochran_device_layout_t cochran_emc14_device_layout = {
COCHRAN_MODEL_EMC_14, // model
32, // address_bits
ENDIAN_LE, // endian
806400, // baudrate
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
512, // rb_logbook_entry_size
256, // rb_logbook_entry_count
0x00022000, // rb_profile_begin
0x00200000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
};
// Cochran EMC-16
static const cochran_device_layout_t cochran_emc16_device_layout = {
COCHRAN_MODEL_EMC_16, // model
32, // address_bits
ENDIAN_LE, // endian
806400, // baudrate
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00080000, // rb_logbook_end
512, // rb_logbook_entry_size
1024, // rb_logbook_entry_count
0x00094000, // rb_profile_begin
0x00800000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
};
// Cochran EMC-20
static const cochran_device_layout_t cochran_emc20_device_layout = {
COCHRAN_MODEL_EMC_20, // model
32, // address_bits
ENDIAN_LE, // endian
806400, // baudrate
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00080000, // rb_logbook_end
512, // rb_logbook_entry_size
1024, // rb_logbook_entry_count
0x00094000, // rb_profile_begin
0x01000000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
};
// Determine model descriptor number from model string
static unsigned int
cochran_commander_get_model (cochran_commander_device_t *device)
{
const cochran_commander_model_t models[] = {
{"AM\x11""2212\x02", COCHRAN_MODEL_COMMANDER_AIR_NITROX},
{"AM7303\x8b\x43", COCHRAN_MODEL_EMC_14},
{"AMA315\xC3\xC5", COCHRAN_MODEL_EMC_16},
{"AM2315\xA3\x71", COCHRAN_MODEL_EMC_20},
};
unsigned int model = 0xFFFFFFFF;
for (unsigned int i = 0; i < C_ARRAY_SIZE(models); ++i) {
if (memcmp (device->id + 0x3B, models[i].id, sizeof(models[i].id) - 1) == 0) {
model = models[i].model;
break;
}
}
return model;
}
static dc_status_t
cochran_commander_serial_setup (cochran_commander_device_t *device)
{
dc_status_t status = DC_STATUS_SUCCESS;
// Set the serial communication protocol (9600 8N2, no FC).
status = dc_serial_configure (device->port, 9600, 8, DC_PARITY_NONE, DC_STOPBITS_TWO, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to set the terminal attributes.");
return status;
}
// Set the timeout for receiving data (5000 ms).
status = dc_serial_set_timeout (device->port, 5000);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to set the timeout.");
return status;
}
// Wake up DC and trigger heartbeat
dc_serial_set_break(device->port, 1);
dc_serial_sleep(device->port, 16);
dc_serial_set_break(device->port, 0);
// Clear old heartbeats
dc_serial_purge (device->port, DC_DIRECTION_ALL);
// Wait for heartbeat byte before send
unsigned char answer = 0;
status = dc_serial_read(device->port, &answer, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to receive device heartbeat.");
return status;
}
if (answer != 0xAA) {
ERROR (device->base.context, "Received bad hearbeat byte (%02x).", answer);
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_packet (cochran_commander_device_t *device, dc_event_progress_t *progress,
const unsigned char command[], unsigned int csize,
unsigned char answer[], unsigned int asize, int high_speed)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t status = DC_STATUS_SUCCESS;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Send the command to the device, one byte at a time
// If sent all at once the command is ignored. It's like the DC
// has no buffering.
for (unsigned int i = 0; i < csize; i++) {
// Give the DC time to read the character.
if (i) dc_serial_sleep(device->port, 16); // 16 ms
status = dc_serial_write(device->port, command + i, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
}
if (high_speed) {
// Give the DC time to process the command.
dc_serial_sleep(device->port, 45);
// Rates are odd, like 806400 for the EMC, 115200 for commander
status = dc_serial_configure(device->port, device->layout->baudrate, 8, DC_PARITY_NONE, DC_STOPBITS_TWO, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to set the high baud rate.");
return status;
}
}
// Receive the answer from the device.
// Use 1024 byte "packets" so we can display progress.
unsigned int nbytes = 0;
while (nbytes < asize) {
unsigned int len = asize - nbytes;
if (len > 1024)
len = 1024;
status = dc_serial_read (device->port, answer + nbytes, len, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive data.");
return status;
}
nbytes += len;
if (progress) {
progress->current += len;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read_id (cochran_commander_device_t *device, unsigned char id[], unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned char command[6] = {0x05, 0x9D, 0xFF, 0x00, 0x43, 0x00};
rc = cochran_commander_packet(device, NULL, command, sizeof(command), id, size, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
if (memcmp(id, "(C)", 3) != 0) {
// It's a Commander, read a different location
command[1] = 0xBD;
command[2] = 0x7F;
rc = cochran_commander_packet(device, NULL, command, sizeof(command), id, size, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read_config (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned char data[], unsigned int size)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t rc = DC_STATUS_SUCCESS;
// Read two 512 byte blocks into one 1024 byte buffer
for (unsigned int i = 0; i < 2; i++) {
const unsigned int len = size / 2;
unsigned char command[2] = {0x96, i};
rc = cochran_commander_packet(device, progress, command, sizeof(command), data + i * len, len, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
dc_event_vendor_t vendor;
vendor.data = data + i * len;
vendor.size = len;
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned int address, unsigned char data[], unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
// Build the command
unsigned char command[10];
unsigned char command_size;
switch (device->layout->address_bits) {
case 32:
// EMC uses 32 bit addressing
command[0] = 0x15;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (address >> 24) & 0xff;
command[5] = (size ) & 0xff;
command[6] = (size >> 8 ) & 0xff;
command[7] = (size >> 16 ) & 0xff;
command[8] = (size >> 24 ) & 0xff;
command[9] = 0x05;
command_size = 10;
break;
case 24:
// Commander uses 24 byte addressing
command[0] = 0x15;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (size ) & 0xff;
command[5] = (size >> 8 ) & 0xff;
command[6] = (size >> 16 ) & 0xff;
command[7] = 0x04;
command_size = 8;
break;
default:
return DC_STATUS_UNSUPPORTED;
}
dc_serial_sleep(device->port, 800);
// set back to 9600 baud
rc = cochran_commander_serial_setup(device);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read data at high speed
rc = cochran_commander_packet (device, progress, command, command_size, data, size, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
static void
cochran_commander_find_fingerprint(cochran_commander_device_t *device, cochran_data_t *data)
{
// Skip to fingerprint to reduce time
if (data->dive_count < device->layout->rb_logbook_entry_count)
data->fp_dive_num = data->dive_count;
else
data->fp_dive_num = device->layout->rb_logbook_entry_count;
data->fp_dive_num--;
while (data->fp_dive_num >= 0 && memcmp(device->fingerprint,
data->logbook + data->fp_dive_num * device->layout->rb_logbook_entry_size,
sizeof(device->fingerprint)))
data->fp_dive_num--;
}
static void
cochran_commander_get_sample_parms(cochran_commander_device_t *device, cochran_data_t *data)
{
dc_device_t *abstract = (dc_device_t *) device;
unsigned int pre_dive_offset = 0, end_dive_offset = 0;
unsigned int dive_count = 0;
if (data->dive_count < device->layout->rb_logbook_entry_count)
dive_count = data->dive_count;
else
dive_count = device->layout->rb_logbook_entry_count;
// Find lowest and highest offsets into sample data
unsigned int low_offset = 0xFFFFFFFF;
unsigned int high_offset = 0;
for (int i = data->fp_dive_num + 1; i < dive_count; i++) {
pre_dive_offset = array_uint32_le (data->logbook + i * device->layout->rb_logbook_entry_size
+ device->layout->pt_profile_pre);
end_dive_offset = array_uint32_le (data->logbook + i * device->layout->rb_logbook_entry_size
+ device->layout->pt_profile_end);
// Validate offsets, allow 0xFFFFFFF for end_dive_offset
// because we handle that as a special case.
if (pre_dive_offset < device->layout->rb_profile_begin ||
pre_dive_offset > device->layout->rb_profile_end) {
ERROR(abstract->context, "Invalid pre-dive offset (%08x) on dive %d.", pre_dive_offset, i);
continue;
}
if (end_dive_offset < device->layout->rb_profile_begin ||
(end_dive_offset > device->layout->rb_profile_end &&
end_dive_offset != 0xFFFFFFFF)) {
ERROR(abstract->context, "Invalid end-dive offset (%08x) on dive %d.", end_dive_offset, i);
continue;
}
// Check for ring buffer wrap-around.
if (pre_dive_offset > end_dive_offset)
break;
if (pre_dive_offset < low_offset)
low_offset = pre_dive_offset;
if (end_dive_offset > high_offset && end_dive_offset != 0xFFFFFFFF )
high_offset = end_dive_offset;
}
if (pre_dive_offset > end_dive_offset) {
high_offset = device->layout->rb_profile_end;
low_offset = device->layout->rb_profile_begin;
data->sample_data_offset = low_offset;
data->sample_size = high_offset - low_offset;
} else if (low_offset < 0xFFFFFFFF && high_offset > 0) {
data->sample_data_offset = low_offset;
data->sample_size = high_offset - data->sample_data_offset;
} else {
data->sample_data_offset = 0;
data->sample_size = 0;
}
}
/*
* For corrupt dives the end-of-samples pointer is 0xFFFFFFFF
* search for a reasonable size, e.g. using next dive start sample
* or end-of-samples to limit searching for recoverable samples
*/
static unsigned int
cochran_commander_guess_sample_end_address(cochran_commander_device_t *device, cochran_data_t *data, unsigned int log_num)
{
const unsigned char *log_entry = data->logbook + device->layout->rb_logbook_entry_size * log_num;
if (log_num == data->dive_count)
// Return next usable address from config page
return array_uint32_le(data->config + device->layout->rb_profile_end);
// Next log's start address
return array_uint32_le(log_entry + device->layout->rb_logbook_entry_size + device->layout->pt_profile_begin);
}
static dc_status_t
cochran_commander_read_all (cochran_commander_device_t *device, cochran_data_t *data)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t rc = DC_STATUS_SUCCESS;
// Calculate max data sizes
unsigned int max_config = sizeof(data->config);
unsigned int max_logbook = device->layout->rb_logbook_end - device->layout->rb_logbook_begin;
unsigned int max_sample = device->layout->rb_profile_end - device->layout->rb_profile_begin;
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = max_config + max_logbook + max_sample;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit ID block
dc_event_vendor_t vendor;
vendor.data = device->id;
vendor.size = sizeof (device->id);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
// Read config
rc = cochran_commander_read_config(device, &progress, data->config, sizeof(data->config));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Determine size of dive list to read.
if (device->layout->endian == ENDIAN_LE)
data->dive_count = array_uint16_le (data->config + device->layout->cf_dive_count);
else
data->dive_count = array_uint16_be (data->config + device->layout->cf_dive_count);
if (data->dive_count > device->layout->rb_logbook_entry_count) {
data->logbook_size = device->layout->rb_logbook_entry_count * device->layout->rb_logbook_entry_size;
} else {
data->logbook_size = data->dive_count * device->layout->rb_logbook_entry_size;
}
progress.maximum -= max_logbook - data->logbook_size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Allocate space for log book.
data->logbook = (unsigned char *) malloc(data->logbook_size);
if (data->logbook == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Request log book
rc = cochran_commander_read(device, &progress, 0, data->logbook, data->logbook_size);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Determine sample memory to read
cochran_commander_find_fingerprint(device, data);
cochran_commander_get_sample_parms(device, data);
progress.maximum -= max_sample - data->sample_size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
if (data->sample_size > 0) {
data->sample = (unsigned char *) malloc(data->sample_size);
if (data->sample == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Read the sample data
rc = cochran_commander_read (device, &progress, data->sample_data_offset, data->sample, data->sample_size);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the sample data.");
return rc;
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
cochran_commander_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
cochran_commander_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (cochran_commander_device_t *) dc_device_allocate (context, &cochran_commander_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->port = NULL;
cochran_commander_device_set_fingerprint((dc_device_t *) device, NULL, 0);
// Open the device.
status = dc_serial_open (&device->port, device->base.context, name);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to open the serial port.");
goto error_free;
}
status = cochran_commander_serial_setup(device);
if (status != DC_STATUS_SUCCESS) {
goto error_close;
}
// Read ID from the device
status = cochran_commander_read_id (device, device->id, sizeof(device->id));
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Device not responding.");
goto error_close;
}
unsigned int model = cochran_commander_get_model(device);
switch (model) {
case COCHRAN_MODEL_COMMANDER_AIR_NITROX:
device->layout = &cochran_cmdr_device_layout;
break;
case COCHRAN_MODEL_EMC_14:
device->layout = &cochran_emc14_device_layout;
break;
case COCHRAN_MODEL_EMC_16:
device->layout = &cochran_emc16_device_layout;
break;
case COCHRAN_MODEL_EMC_20:
device->layout = &cochran_emc20_device_layout;
break;
default:
ERROR (context, "Unknown model");
status = DC_STATUS_UNSUPPORTED;
goto error_close;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
error_close:
dc_serial_close (device->port);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
cochran_commander_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Close the device.
rc = dc_serial_close (device->port);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
static dc_status_t
cochran_commander_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0xFF, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
return cochran_commander_read(device, NULL, address, data, size);
}
static dc_status_t
cochran_commander_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned char config[1024];
// Make sure buffer is good.
if (!dc_buffer_clear(buffer)) {
ERROR (abstract->context, "Uninitialized buffer.");
return DC_STATUS_INVALIDARGS;
}
// Reserve space
if (!dc_buffer_resize(buffer, device->layout->rb_profile_end)) {
ERROR(abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Determine size for progress
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = sizeof(config) + device->layout->rb_profile_end;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit ID block
dc_event_vendor_t vendor;
vendor.data = device->id;
vendor.size = sizeof (device->id);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
rc = cochran_commander_read_config (device, &progress, config, sizeof(config));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the sample data, from 0 to sample end will include logbook
rc = cochran_commander_read (device, &progress, 0, dc_buffer_get_data(buffer), device->layout->rb_profile_end);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the sample data.");
return rc;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t status = DC_STATUS_SUCCESS;
cochran_data_t data;
data.logbook = NULL;
data.sample = NULL;
status = cochran_commander_read_all (device, &data);
if (status != DC_STATUS_SUCCESS)
goto error;
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = device->layout->model;
devinfo.firmware = 0; // unknown
devinfo.serial = array_uint32_le(data.config + device->layout->cf_serial_number);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Calculate profile RB effective head pointer
// Cochran seems to erase 8K chunks so round up.
unsigned int last_start_address = (array_uint32_le(data.config + device->layout->cf_last_interdive) & 0xfffff000) + 0x2000;
if (last_start_address < device->layout->rb_profile_begin || last_start_address > device->layout->rb_profile_end) {
ERROR(abstract->context, "Invalid profile ringbuffer head pointer in Cochran config block.");
status = DC_STATUS_DATAFORMAT;
goto error;
}
// We track profile ringbuffer usage to determine which dives have profile data
int profile_capacity_remaining = device->layout->rb_profile_end - device->layout->rb_profile_begin;
unsigned int dive_count = 0;
if (data.dive_count < device->layout->rb_logbook_entry_count)
dive_count = data.dive_count;
else
dive_count = device->layout->rb_logbook_entry_count;
// Loop through each dive
for (int i = dive_count - 1; i > data.fp_dive_num; i--) {
unsigned char *log_entry = data.logbook + i * device->layout->rb_logbook_entry_size;
unsigned int sample_start_address = array_uint32_le (log_entry + device->layout->pt_profile_begin);
unsigned int sample_end_address = array_uint32_le (log_entry + device->layout->pt_profile_end);
// Validate
if (sample_start_address < device->layout->rb_profile_begin ||
sample_start_address > device->layout->rb_profile_end ||
sample_end_address < device->layout->rb_profile_begin ||
(sample_end_address > device->layout->rb_profile_end &&
sample_end_address != 0xFFFFFFFF)) {
continue;
}
if (sample_end_address == 0xFFFFFFFF)
// Corrupt dive, guess the end address
sample_end_address = cochran_commander_guess_sample_end_address(device, &data, i);
// Determine if sample exists
if (profile_capacity_remaining > 0) {
// Subtract this dive's profile size including post-dive events
profile_capacity_remaining -= (last_start_address - sample_start_address);
// Adjust for a dive that wraps the buffer
if (sample_start_address > last_start_address)
profile_capacity_remaining -= device->layout->rb_profile_end - device->layout->rb_profile_begin;
}
last_start_address = sample_start_address;
unsigned char *sample = NULL;
int sample_size = 0;
if (profile_capacity_remaining < 0) {
// There is no profile for this dive
sample = NULL;
sample_size = 0;
} else {
// Calculate the size of the profile only
sample = data.sample + sample_start_address - data.sample_data_offset;
sample_size = sample_end_address - sample_start_address;
if (sample_size < 0)
// Adjust for ring buffer wrap-around
sample_size += device->layout->rb_profile_end - device->layout->rb_profile_begin;
}
// Build dive blob
unsigned int dive_size = device->layout->rb_logbook_entry_size + sample_size;
unsigned char *dive = (unsigned char *) malloc(dive_size);
if (dive == NULL) {
status = DC_STATUS_NOMEMORY;
goto error;
}
memcpy(dive, log_entry, device->layout->rb_logbook_entry_size); // log
// Copy profile data
if (sample_size) {
if (sample_start_address <= sample_end_address) {
memcpy(dive + device->layout->rb_logbook_entry_size, sample, sample_size);
} else {
// It wrapped the buffer, copy two sections
unsigned int size = device->layout->rb_profile_end - sample_start_address;
memcpy(dive + device->layout->rb_logbook_entry_size, sample, size);
memcpy(dive + device->layout->rb_logbook_entry_size + size,
data.sample, sample_end_address - device->layout->rb_profile_begin);
}
}
if (callback && !callback (dive, dive_size, dive, sizeof(device->fingerprint), userdata)) {
free(dive);
break;
}
free(dive);
}
error:
free(data.logbook);
free(data.sample);
return status;
}