libdivecomputer/src/suunto_eon_parser.c
Jef Driesen 63f5a4d652 Remove the dc_parser_set_data function
The dc_parser_set_data() function allows to re-use a parser object for
multiple dives. The advantages of this feature are actually very limited
in practice. The reduction in memory consumption is almost negligible,
because the amount of internal state in the parser is typically very
small. But the implementation requires some additional complexity
because each backend needs code to reset its internal state. Therefore,
the function is removed and the data and size needs to be passed
directly to the dc_parser_new() and dc_parser_new2() functions instead.

Because keeping a reference to the data has also caused issues in the
past, especially for applications implemented in a garbage collected
language, the data will now also get copied internally.
2023-05-15 22:19:37 +02:00

338 lines
8.7 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <libdivecomputer/units.h>
#include "suunto_eon.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) dc_parser_isinstance((parser), &suunto_eon_parser_vtable)
typedef struct suunto_eon_parser_t suunto_eon_parser_t;
struct suunto_eon_parser_t {
dc_parser_t base;
int spyder;
// Cached fields.
unsigned int cached;
unsigned int divetime;
unsigned int maxdepth;
unsigned int marker;
unsigned int nitrox;
};
static dc_status_t suunto_eon_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t suunto_eon_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t suunto_eon_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t suunto_eon_parser_vtable = {
sizeof(suunto_eon_parser_t),
DC_FAMILY_SUUNTO_EON,
NULL, /* set_clock */
NULL, /* set_atmospheric */
NULL, /* set_density */
suunto_eon_parser_get_datetime, /* datetime */
suunto_eon_parser_get_field, /* fields */
suunto_eon_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
static dc_status_t
suunto_eon_parser_cache (suunto_eon_parser_t *parser)
{
dc_parser_t *abstract = (dc_parser_t *) parser;
const unsigned char *data = parser->base.data;
unsigned int size = parser->base.size;
if (parser->cached) {
return DC_STATUS_SUCCESS;
}
if (size < 13) {
return DC_STATUS_DATAFORMAT;
}
// The Solution Nitrox/Vario stores nitrox data, not tank pressure.
unsigned int nitrox = !parser->spyder && (data[4] & 0x80);
// Parse the samples.
unsigned int interval = data[3];
unsigned int nsamples = 0;
unsigned int depth = 0, maxdepth = 0;
unsigned int offset = 11;
while (offset < size && data[offset] != 0x80) {
unsigned char value = data[offset++];
if (value < 0x7d || value > 0x82) {
depth += (signed char) value;
if (depth > maxdepth)
maxdepth = depth;
nsamples++;
}
}
// Check the end marker.
unsigned int marker = offset;
if (marker + 2 >= size || data[marker] != 0x80) {
ERROR (abstract->context, "No valid end marker found!");
return DC_STATUS_DATAFORMAT;
}
// Cache the data for later use.
parser->divetime = nsamples * interval;
parser->maxdepth = maxdepth;
parser->marker = marker;
parser->nitrox = nitrox;
parser->cached = 1;
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_eon_parser_create (dc_parser_t **out, dc_context_t *context, const unsigned char data[], size_t size, int spyder)
{
suunto_eon_parser_t *parser = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
parser = (suunto_eon_parser_t *) dc_parser_allocate (context, &suunto_eon_parser_vtable, data, size);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
parser->spyder = spyder;
parser->cached = 0;
parser->divetime = 0;
parser->maxdepth = 0;
parser->marker = 0;
parser->nitrox = 0;
*out = (dc_parser_t*) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_eon_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
suunto_eon_parser_t *parser = (suunto_eon_parser_t *) abstract;
if (abstract->size < 6 + 5)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data + 6;
if (datetime) {
if (parser->spyder) {
datetime->year = p[0] + (p[0] < 90 ? 2000 : 1900);
datetime->month = p[1];
datetime->day = p[2];
datetime->hour = p[3];
datetime->minute = p[4];
} else {
datetime->year = bcd2dec (p[0]) + (bcd2dec (p[0]) < 85 ? 2000 : 1900);
datetime->month = bcd2dec (p[1]);
datetime->day = bcd2dec (p[2]);
datetime->hour = bcd2dec (p[3]);
datetime->minute = bcd2dec (p[4]);
}
datetime->second = 0;
datetime->timezone = DC_TIMEZONE_NONE;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_eon_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
suunto_eon_parser_t *parser = (suunto_eon_parser_t *) abstract;
const unsigned char *data = abstract->data;
// Cache the data.
dc_status_t rc = suunto_eon_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_tank_t *tank = (dc_tank_t *) value;
unsigned int oxygen = 21;
unsigned int beginpressure = 0;
unsigned int endpressure = 0;
if (parser->nitrox) {
oxygen = data[0x05];
} else {
beginpressure = data[5] * 2;
endpressure = data[parser->marker + 2] * 2;
}
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
*((unsigned int *) value) = parser->divetime;
break;
case DC_FIELD_MAXDEPTH:
*((double *) value) = parser->maxdepth * FEET;
break;
case DC_FIELD_GASMIX_COUNT:
*((unsigned int *) value) = 1;
break;
case DC_FIELD_GASMIX:
gasmix->usage = DC_USAGE_NONE;
gasmix->helium = 0.0;
gasmix->oxygen = oxygen / 100.0;
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_TANK_COUNT:
if (beginpressure == 0 && endpressure == 0)
*((unsigned int *) value) = 0;
else
*((unsigned int *) value) = 1;
break;
case DC_FIELD_TANK:
tank->type = DC_TANKVOLUME_NONE;
tank->volume = 0.0;
tank->workpressure = 0.0;
tank->gasmix = 0;
tank->beginpressure = beginpressure;
tank->endpressure = endpressure;
tank->usage = DC_USAGE_NONE;
break;
case DC_FIELD_TEMPERATURE_MINIMUM:
if (parser->spyder)
*((double *) value) = (signed char) data[parser->marker + 1];
else
*((double *) value) = data[parser->marker + 1] - 40;
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_eon_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
suunto_eon_parser_t *parser = (suunto_eon_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
dc_sample_value_t sample = {0};
// Cache the data.
dc_status_t rc = suunto_eon_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Time
sample.time = 0;
if (callback) callback (DC_SAMPLE_TIME, &sample, userdata);
// Depth (0 ft)
sample.depth = 0;
if (callback) callback (DC_SAMPLE_DEPTH, &sample, userdata);
// Initial gas mix.
sample.gasmix = 0;
if (callback) callback (DC_SAMPLE_GASMIX, &sample, userdata);
unsigned int depth = 0;
unsigned int time = 0;
unsigned int interval = data[3];
unsigned int complete = 1;
unsigned int offset = 11;
while (offset < size && data[offset] != 0x80) {
unsigned char value = data[offset++];
if (complete) {
// Time (seconds).
time += interval;
sample.time = time * 1000;
if (callback) callback (DC_SAMPLE_TIME, &sample, userdata);
complete = 0;
}
if (value < 0x7d || value > 0x82) {
// Delta depth.
depth += (signed char) value;
// Depth (ft).
sample.depth = depth * FEET;
if (callback) callback (DC_SAMPLE_DEPTH, &sample, userdata);
complete = 1;
} else {
// Event.
sample.event.type = SAMPLE_EVENT_NONE;
sample.event.time = 0;
sample.event.flags = 0;
sample.event.value = 0;
switch (value) {
case 0x7d: // Surface
sample.event.type = SAMPLE_EVENT_SURFACE;
break;
case 0x7e: // Deco, ASC
sample.event.type = SAMPLE_EVENT_DECOSTOP;
break;
case 0x7f: // Ceiling, ERR
sample.event.type = SAMPLE_EVENT_CEILING;
break;
case 0x81: // Slow
sample.event.type = SAMPLE_EVENT_ASCENT;
break;
default: // Unknown
WARNING (abstract->context, "Unknown event");
break;
}
if (sample.event.type != SAMPLE_EVENT_NONE) {
if (callback) callback (DC_SAMPLE_EVENT, &sample, userdata);
}
}
}
// Time
if (complete) {
time += interval;
sample.time = time * 1000;
if (callback) callback (DC_SAMPLE_TIME, &sample, userdata);
}
// Depth (0 ft)
sample.depth = 0;
if (callback) callback (DC_SAMPLE_DEPTH, &sample, userdata);
return DC_STATUS_SUCCESS;
}