libdivecomputer/src/suunto_solution.c
Jef Driesen 6419e189a4 Add a single isinstance function per object type.
Currently, each backend has it's own function to verify whether the
object vtable pointer is the expected one. All these functions can be
removed in favor of a single isintance function in the base class,
which takes the expected vtable pointer as a parameter.

Functions which are called through the vtable, don't need to verify the
vtable pointer, and those checks are removed.
2013-04-16 12:18:54 +02:00

342 lines
9.4 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc, free
#include <libdivecomputer/suunto_solution.h>
#include <libdivecomputer/units.h>
#include "context-private.h"
#include "device-private.h"
#include "ringbuffer.h"
#include "serial.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &suunto_solution_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define SZ_MEMORY 256
#define RB_PROFILE_BEGIN 0x020
#define RB_PROFILE_END 0x100
typedef struct suunto_solution_device_t {
dc_device_t base;
serial_t *port;
} suunto_solution_device_t;
static dc_status_t suunto_solution_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t suunto_solution_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t suunto_solution_device_close (dc_device_t *abstract);
static const dc_device_vtable_t suunto_solution_device_vtable = {
DC_FAMILY_SUUNTO_SOLUTION,
NULL, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
suunto_solution_device_dump, /* dump */
suunto_solution_device_foreach, /* foreach */
suunto_solution_device_close /* close */
};
dc_status_t
suunto_solution_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
suunto_solution_device_t *device = (suunto_solution_device_t *) malloc (sizeof (suunto_solution_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &suunto_solution_device_vtable);
// Set the default values.
device->port = NULL;
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (1200 8N2).
rc = serial_configure (device->port, 1200, 8, SERIAL_PARITY_NONE, 2, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (1000ms).
if (serial_set_timeout (device->port, 1000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Clear the RTS line.
if (serial_set_rts (device->port, 0)) {
ERROR (context, "Failed to set the DTR/RTS line.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_solution_device_close (dc_device_t *abstract)
{
suunto_solution_device_t *device = (suunto_solution_device_t*) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_solution_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
suunto_solution_device_t *device = (suunto_solution_device_t*) abstract;
// Erase the current contents of the buffer and
// allocate the required amount of memory.
if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
unsigned char *data = dc_buffer_get_data (buffer);
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_MEMORY - 1 + 2;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
int n = 0;
unsigned char command[3] = {0};
unsigned char answer[3] = {0};
// Assert DTR
serial_set_dtr (device->port, 1);
// Send: 0xFF
command[0] = 0xFF;
serial_write (device->port, command, 1);
// Receive: 0x3F
n = serial_read (device->port, answer, 1);
if (n != 1) return EXITCODE (n);
if (answer[0] != 0x3F)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x4D, 0x01, 0x01
command[0] = 0x4D;
command[1] = 0x01;
command[2] = 0x01;
serial_write (device->port, command, 3);
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
data[0] = 0x00;
for (unsigned int i = 1; i < SZ_MEMORY; ++i) {
// Receive: 0x01, i, data[i]
n = serial_read (device->port, answer, 3);
if (n != 3) return EXITCODE (n);
if (answer[0] != 0x01 || answer[1] != i)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: i
command[0] = i;
serial_write (device->port, command, 1);
// Receive: data[i]
n = serial_read (device->port, data + i, 1);
if (n != 1) return EXITCODE (n);
if (data[i] != answer[2])
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x0D
command[0] = 0x0D;
serial_write (device->port, command, 1);
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
}
// Receive: 0x02, 0x00, 0x80
n = serial_read (device->port, answer, 3);
if (n != 3) return EXITCODE (n);
if (answer[0] != 0x02 || answer[1] != 0x00 || answer[2] != 0x80)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x80
command[0] = 0x80;
serial_write (device->port, command, 1);
// Receive: 0x80
n = serial_read (device->port, answer, 1);
if (n != 1) return EXITCODE (n);
if (answer[0] != 0x80)
WARNING (abstract->context, "Unexpected answer byte.");
// Send: 0x20
command[0] = 0x20;
serial_write (device->port, command, 1);
// Receive: 0x3F
n = serial_read (device->port, answer, 1);
if (n != 1) return EXITCODE (n);
if (answer[0] != 0x3F)
WARNING (abstract->context, "Unexpected answer byte.");
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
return DC_STATUS_SUCCESS;
}
static dc_status_t
suunto_solution_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = suunto_solution_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
// Emit a device info event.
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = 0;
devinfo.firmware = 0;
devinfo.serial = 0;
for (unsigned int i = 0; i < 3; ++i) {
devinfo.serial *= 100;
devinfo.serial += bcd2dec (data[0x1D + i]);
}
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = suunto_solution_extract_dives (abstract,
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
dc_status_t
suunto_solution_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
unsigned char buffer[RB_PROFILE_END - RB_PROFILE_BEGIN] = {0};
// Get the end of the profile ring buffer.
unsigned int eop = data[0x18];
if (eop < RB_PROFILE_BEGIN ||
eop >= RB_PROFILE_END ||
data[eop] != 0x82)
{
return DC_STATUS_DATAFORMAT;
}
// The profile data is stored backwards in the ringbuffer. To locate
// the most recent dive, we start from the end of profile marker and
// traverse the ringbuffer in the opposite direction (forwards).
// Since the profile data is now processed in the "wrong" direction,
// it needs to be reversed again.
unsigned int previous = eop;
unsigned int current = eop;
for (unsigned int i = 0; i < RB_PROFILE_END - RB_PROFILE_BEGIN; ++i) {
// Move forwards through the ringbuffer.
current++;
if (current == RB_PROFILE_END)
current = RB_PROFILE_BEGIN;
// Check for an end of profile marker.
if (data[current] == 0x82)
break;
// Store the current byte into the buffer. By starting at the
// end of the buffer, the data is automatically reversed.
unsigned int idx = RB_PROFILE_END - RB_PROFILE_BEGIN - i - 1;
buffer[idx] = data[current];
// Check for an end of dive marker (of the next dive),
// to find the start of the current dive.
unsigned int peek = ringbuffer_increment (current, 2, RB_PROFILE_BEGIN, RB_PROFILE_END);
if (data[peek] == 0x80) {
unsigned int len = ringbuffer_distance (previous, current, 0, RB_PROFILE_BEGIN, RB_PROFILE_END);
if (callback && !callback (buffer + idx, len, NULL, 0, userdata))
return DC_STATUS_SUCCESS;
previous = current;
}
}
if (data[current] != 0x82)
return DC_STATUS_DATAFORMAT;
return DC_STATUS_SUCCESS;
}