libdivecomputer/src/serial_win32.c
Jef Driesen 7a4c5e919f Fix a conflict with the Windows header files
In one of the Windows system header files, an "interface" macro is
defined as:

  #define interface struct

This results in some very strange build errors when also including the
descriptor-private.h header file. That's because the dc_usb_params_t
struct has a member field named "interface":

  typedef struct dc_usb_params_t {
      unsigned int interface;
      unsigned char endpoint_in;
      unsigned char endpoint_out;
  } dc_usb_params_t;

As a workaround, define the WIN32_LEAN_AND_MEAN macro before including
the windows.h header file. This excludes some less common Windows API
declarations, including the above one.
2020-08-21 23:56:52 +02:00

843 lines
21 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#define WIN32_LEAN_AND_MEAN
#define NOGDI
#include <windows.h>
#include <libdivecomputer/serial.h>
#include "common-private.h"
#include "context-private.h"
#include "iostream-private.h"
#include "iterator-private.h"
#include "descriptor-private.h"
static dc_status_t dc_serial_iterator_next (dc_iterator_t *iterator, void *item);
static dc_status_t dc_serial_iterator_free (dc_iterator_t *iterator);
static dc_status_t dc_serial_set_timeout (dc_iostream_t *iostream, int timeout);
static dc_status_t dc_serial_set_break (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_set_dtr (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_set_rts (dc_iostream_t *iostream, unsigned int value);
static dc_status_t dc_serial_get_lines (dc_iostream_t *iostream, unsigned int *value);
static dc_status_t dc_serial_get_available (dc_iostream_t *iostream, size_t *value);
static dc_status_t dc_serial_configure (dc_iostream_t *iostream, unsigned int baudrate, unsigned int databits, dc_parity_t parity, dc_stopbits_t stopbits, dc_flowcontrol_t flowcontrol);
static dc_status_t dc_serial_poll (dc_iostream_t *iostream, int timeout);
static dc_status_t dc_serial_read (dc_iostream_t *iostream, void *data, size_t size, size_t *actual);
static dc_status_t dc_serial_write (dc_iostream_t *iostream, const void *data, size_t size, size_t *actual);
static dc_status_t dc_serial_ioctl (dc_iostream_t *iostream, unsigned int request, void *data, size_t size);
static dc_status_t dc_serial_flush (dc_iostream_t *iostream);
static dc_status_t dc_serial_purge (dc_iostream_t *iostream, dc_direction_t direction);
static dc_status_t dc_serial_sleep (dc_iostream_t *iostream, unsigned int milliseconds);
static dc_status_t dc_serial_close (dc_iostream_t *iostream);
struct dc_serial_device_t {
char name[256];
};
typedef struct dc_serial_iterator_t {
dc_iterator_t base;
dc_descriptor_t *descriptor;
HKEY hKey;
DWORD count;
DWORD current;
} dc_serial_iterator_t;
typedef struct dc_serial_t {
dc_iostream_t base;
/*
* The file descriptor corresponding to the serial port.
*/
HANDLE hFile;
/*
* Serial port settings are saved into this variables immediately
* after the port is opened. These settings are restored when the
* serial port is closed.
*/
DCB dcb;
COMMTIMEOUTS timeouts;
HANDLE hReadWrite, hPoll;
OVERLAPPED overlapped;
DWORD events;
BOOL pending;
} dc_serial_t;
static const dc_iterator_vtable_t dc_serial_iterator_vtable = {
sizeof(dc_serial_iterator_t),
dc_serial_iterator_next,
dc_serial_iterator_free,
};
static const dc_iostream_vtable_t dc_serial_vtable = {
sizeof(dc_serial_t),
dc_serial_set_timeout, /* set_timeout */
dc_serial_set_break, /* set_break */
dc_serial_set_dtr, /* set_dtr */
dc_serial_set_rts, /* set_rts */
dc_serial_get_lines, /* get_lines */
dc_serial_get_available, /* get_available */
dc_serial_configure, /* configure */
dc_serial_poll, /* poll */
dc_serial_read, /* read */
dc_serial_write, /* write */
dc_serial_ioctl, /* ioctl */
dc_serial_flush, /* flush */
dc_serial_purge, /* purge */
dc_serial_sleep, /* sleep */
dc_serial_close, /* close */
};
static dc_status_t
syserror(DWORD errcode)
{
switch (errcode) {
case ERROR_INVALID_PARAMETER:
return DC_STATUS_INVALIDARGS;
case ERROR_OUTOFMEMORY:
return DC_STATUS_NOMEMORY;
case ERROR_FILE_NOT_FOUND:
return DC_STATUS_NODEVICE;
case ERROR_ACCESS_DENIED:
return DC_STATUS_NOACCESS;
default:
return DC_STATUS_IO;
}
}
const char *
dc_serial_device_get_name (dc_serial_device_t *device)
{
if (device == NULL || device->name[0] == '\0')
return NULL;
return device->name;
}
void
dc_serial_device_free (dc_serial_device_t *device)
{
free (device);
}
dc_status_t
dc_serial_iterator_new (dc_iterator_t **out, dc_context_t *context, dc_descriptor_t *descriptor)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_iterator_t *iterator = NULL;
HKEY hKey = NULL;
DWORD count = 0;
LONG rc = 0;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
iterator = (dc_serial_iterator_t *) dc_iterator_allocate (context, &dc_serial_iterator_vtable);
if (iterator == NULL) {
SYSERROR (context, ERROR_OUTOFMEMORY);
return DC_STATUS_NOMEMORY;
}
// Open the registry key.
rc = RegOpenKeyExA (HKEY_LOCAL_MACHINE, "HARDWARE\\DEVICEMAP\\SERIALCOMM", 0, KEY_QUERY_VALUE, &hKey);
if (rc != ERROR_SUCCESS) {
if (rc == ERROR_FILE_NOT_FOUND) {
hKey = NULL;
} else {
SYSERROR (context, rc);
status = syserror (rc);
goto error_free;
}
}
// Get the number of values.
if (hKey) {
rc = RegQueryInfoKey (hKey, NULL, NULL, NULL, NULL, NULL, NULL, &count, NULL, NULL, NULL, NULL);
if (rc != ERROR_SUCCESS) {
SYSERROR (context, rc);
status = syserror (rc);
goto error_close;
}
}
iterator->descriptor = descriptor;
iterator->hKey = hKey;
iterator->count = count;
iterator->current = 0;
*out = (dc_iterator_t *) iterator;
return DC_STATUS_SUCCESS;
error_close:
RegCloseKey (hKey);
error_free:
dc_iterator_deallocate ((dc_iterator_t *) iterator);
return status;
}
static dc_status_t
dc_serial_iterator_next (dc_iterator_t *abstract, void *out)
{
dc_serial_iterator_t *iterator = (dc_serial_iterator_t *) abstract;
dc_serial_device_t *device = NULL;
while (iterator->current < iterator->count) {
// Get the value name, data and type.
char name[256], data[sizeof(device->name)];
DWORD name_len = sizeof (name);
DWORD data_len = sizeof (data);
DWORD type = 0;
LONG rc = RegEnumValueA (iterator->hKey, iterator->current++, name, &name_len, NULL, &type, (LPBYTE) data, &data_len);
if (rc != ERROR_SUCCESS) {
SYSERROR (abstract->context, rc);
return syserror (rc);
}
// Ignore non-string values.
if (type != REG_SZ)
continue;
// Prevent a possible buffer overflow.
if (data_len >= sizeof (data)) {
return DC_STATUS_NOMEMORY;
}
// Null terminate the string.
data[data_len] = 0;
if (!dc_descriptor_filter (iterator->descriptor, DC_TRANSPORT_SERIAL, data, NULL)) {
continue;
}
device = (dc_serial_device_t *) malloc (sizeof(dc_serial_device_t));
if (device == NULL) {
SYSERROR (abstract->context, ERROR_OUTOFMEMORY);
return DC_STATUS_NOMEMORY;
}
strncpy(device->name, data, sizeof(device->name));
*(dc_serial_device_t **) out = device;
return DC_STATUS_SUCCESS;
}
return DC_STATUS_DONE;
}
static dc_status_t
dc_serial_iterator_free (dc_iterator_t *abstract)
{
dc_serial_iterator_t *iterator = (dc_serial_iterator_t *) abstract;
if (iterator->hKey) {
RegCloseKey (iterator->hKey);
}
return DC_STATUS_SUCCESS;
}
dc_status_t
dc_serial_open (dc_iostream_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = NULL;
if (out == NULL || name == NULL)
return DC_STATUS_INVALIDARGS;
INFO (context, "Open: name=%s", name);
// Build the device name.
const char *devname = NULL;
char buffer[MAX_PATH] = "\\\\.\\";
if (strncmp (name, buffer, 4) != 0) {
size_t length = strlen (name) + 1;
if (length + 4 > sizeof (buffer))
return DC_STATUS_NOMEMORY;
memcpy (buffer + 4, name, length);
devname = buffer;
} else {
devname = name;
}
// Allocate memory.
device = (dc_serial_t *) dc_iostream_allocate (context, &dc_serial_vtable, DC_TRANSPORT_SERIAL);
if (device == NULL) {
SYSERROR (context, ERROR_OUTOFMEMORY);
return DC_STATUS_NOMEMORY;
}
// Default values.
memset(&device->overlapped, 0, sizeof(device->overlapped));
device->events = 0;
device->pending = FALSE;
// Create a manual reset event for I/O.
device->hReadWrite = CreateEvent (NULL, TRUE, FALSE, NULL);
if (device->hReadWrite == INVALID_HANDLE_VALUE) {
DWORD errcode = GetLastError ();
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_free;
}
// Create a manual reset event for polling.
device->hPoll = CreateEvent (NULL, TRUE, FALSE, NULL);
if (device->hPoll == INVALID_HANDLE_VALUE) {
DWORD errcode = GetLastError ();
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_free_readwrite;
}
// Open the device.
device->hFile = CreateFileA (devname,
GENERIC_READ | GENERIC_WRITE, 0,
NULL, // No security attributes.
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
NULL);
if (device->hFile == INVALID_HANDLE_VALUE) {
DWORD errcode = GetLastError ();
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_free_poll;
}
// Retrieve the current communication settings and timeouts,
// to be able to restore them when closing the device.
// It is also used to check if the obtained handle
// represents a serial device.
if (!GetCommState (device->hFile, &device->dcb) ||
!GetCommTimeouts (device->hFile, &device->timeouts)) {
DWORD errcode = GetLastError ();
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_close;
}
// Enable event monitoring.
if (!SetCommMask (device->hFile, EV_RXCHAR)) {
DWORD errcode = GetLastError ();
SYSERROR (context, errcode);
status = syserror (errcode);
goto error_close;
}
*out = (dc_iostream_t *) device;
return DC_STATUS_SUCCESS;
error_close:
CloseHandle (device->hFile);
error_free_poll:
CloseHandle (device->hPoll);
error_free_readwrite:
CloseHandle (device->hReadWrite);
error_free:
dc_iostream_deallocate ((dc_iostream_t *) device);
return status;
}
static dc_status_t
dc_serial_close (dc_iostream_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = (dc_serial_t *) abstract;
// Disable event monitoring.
SetCommMask (device->hFile, 0);
// Restore the initial communication settings and timeouts.
if (!SetCommState (device->hFile, &device->dcb) ||
!SetCommTimeouts (device->hFile, &device->timeouts)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
dc_status_set_error(&status, syserror (errcode));
}
// Close the device.
if (!CloseHandle (device->hFile)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
dc_status_set_error(&status, syserror (errcode));
}
CloseHandle (device->hPoll);
CloseHandle (device->hReadWrite);
return status;
}
static dc_status_t
dc_serial_configure (dc_iostream_t *abstract, unsigned int baudrate, unsigned int databits, dc_parity_t parity, dc_stopbits_t stopbits, dc_flowcontrol_t flowcontrol)
{
dc_serial_t *device = (dc_serial_t *) abstract;
// Retrieve the current settings.
DCB dcb;
if (!GetCommState (device->hFile, &dcb)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
dcb.fBinary = TRUE; // Enable Binary Transmission
dcb.fAbortOnError = FALSE;
// Baudrate.
dcb.BaudRate = baudrate;
// Character size.
if (databits >= 5 && databits <= 8)
dcb.ByteSize = databits;
else
return DC_STATUS_INVALIDARGS;
// Parity checking.
switch (parity) {
case DC_PARITY_NONE:
dcb.Parity = NOPARITY;
dcb.fParity = FALSE;
break;
case DC_PARITY_EVEN:
dcb.Parity = EVENPARITY;
dcb.fParity = TRUE;
break;
case DC_PARITY_ODD:
dcb.Parity = ODDPARITY;
dcb.fParity = TRUE;
break;
case DC_PARITY_MARK:
dcb.Parity = MARKPARITY;
dcb.fParity = TRUE;
break;
case DC_PARITY_SPACE:
dcb.Parity = SPACEPARITY;
dcb.fParity = TRUE;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Stopbits.
switch (stopbits) {
case DC_STOPBITS_ONE:
dcb.StopBits = ONESTOPBIT;
break;
case DC_STOPBITS_ONEPOINTFIVE:
dcb.StopBits = ONE5STOPBITS;
break;
case DC_STOPBITS_TWO:
dcb.StopBits = TWOSTOPBITS;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Flow control.
switch (flowcontrol) {
case DC_FLOWCONTROL_NONE:
dcb.fInX = FALSE;
dcb.fOutX = FALSE;
dcb.fOutxCtsFlow = FALSE;
dcb.fOutxDsrFlow = FALSE;
dcb.fDtrControl = DTR_CONTROL_ENABLE;
dcb.fRtsControl = RTS_CONTROL_ENABLE;
break;
case DC_FLOWCONTROL_HARDWARE:
dcb.fInX = FALSE;
dcb.fOutX = FALSE;
dcb.fOutxCtsFlow = TRUE;
dcb.fOutxDsrFlow = TRUE;
dcb.fDtrControl = DTR_CONTROL_HANDSHAKE;
dcb.fRtsControl = RTS_CONTROL_HANDSHAKE;
break;
case DC_FLOWCONTROL_SOFTWARE:
dcb.fInX = TRUE;
dcb.fOutX = TRUE;
dcb.fOutxCtsFlow = FALSE;
dcb.fOutxDsrFlow = FALSE;
dcb.fDtrControl = DTR_CONTROL_ENABLE;
dcb.fRtsControl = RTS_CONTROL_ENABLE;
break;
default:
return DC_STATUS_INVALIDARGS;
}
// Apply the new settings.
if (!SetCommState (device->hFile, &dcb)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_timeout (dc_iostream_t *abstract, int timeout)
{
dc_serial_t *device = (dc_serial_t *) abstract;
// Retrieve the current timeouts.
COMMTIMEOUTS timeouts;
if (!GetCommTimeouts (device->hFile, &timeouts)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
// Update the settings.
if (timeout < 0) {
// Blocking mode.
timeouts.ReadIntervalTimeout = 0;
timeouts.ReadTotalTimeoutMultiplier = 0;
timeouts.ReadTotalTimeoutConstant = 0;
timeouts.WriteTotalTimeoutMultiplier = 0;
timeouts.WriteTotalTimeoutConstant = 0;
} else if (timeout == 0) {
// Non-blocking mode.
timeouts.ReadIntervalTimeout = MAXDWORD;
timeouts.ReadTotalTimeoutMultiplier = 0;
timeouts.ReadTotalTimeoutConstant = 0;
timeouts.WriteTotalTimeoutMultiplier = 0;
timeouts.WriteTotalTimeoutConstant = 0;
} else {
// Standard timeout mode.
timeouts.ReadIntervalTimeout = 0;
timeouts.ReadTotalTimeoutMultiplier = 0;
timeouts.ReadTotalTimeoutConstant = timeout;
timeouts.WriteTotalTimeoutMultiplier = 0;
timeouts.WriteTotalTimeoutConstant = 0;
}
// Activate the new timeouts.
if (!SetCommTimeouts (device->hFile, &timeouts)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_poll (dc_iostream_t *abstract, int timeout)
{
dc_serial_t *device = (dc_serial_t *) abstract;
while (1) {
COMSTAT stats;
if (!ClearCommError (device->hFile, NULL, &stats)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
if (stats.cbInQue)
break;
if (!device->pending) {
memset(&device->overlapped, 0, sizeof(device->overlapped));
device->overlapped.hEvent = device->hPoll;
device->events = 0;
if (!WaitCommEvent (device->hFile, &device->events, &device->overlapped)) {
DWORD errcode = GetLastError ();
if (errcode != ERROR_IO_PENDING) {
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
device->pending = TRUE;
}
}
if (device->pending) {
DWORD errcode = 0;
DWORD rc = WaitForSingleObject (device->hPoll, timeout >= 0 ? (DWORD) timeout : INFINITE);
switch (rc) {
case WAIT_OBJECT_0:
break;
case WAIT_TIMEOUT:
return DC_STATUS_TIMEOUT;
default:
errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
}
DWORD dummy = 0;
if (!GetOverlappedResult (device->hFile, &device->overlapped, &dummy, TRUE)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
device->pending = FALSE;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_read (dc_iostream_t *abstract, void *data, size_t size, size_t *actual)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = (dc_serial_t *) abstract;
DWORD dwRead = 0;
OVERLAPPED overlapped = {0};
overlapped.hEvent = device->hReadWrite;
if (!ReadFile (device->hFile, data, size, NULL, &overlapped)) {
DWORD errcode = GetLastError ();
if (errcode != ERROR_IO_PENDING) {
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
}
if (!GetOverlappedResult (device->hFile, &overlapped, &dwRead, TRUE)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
if (dwRead != size) {
status = DC_STATUS_TIMEOUT;
}
out:
if (actual)
*actual = dwRead;
return status;
}
static dc_status_t
dc_serial_write (dc_iostream_t *abstract, const void *data, size_t size, size_t *actual)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_serial_t *device = (dc_serial_t *) abstract;
DWORD dwWritten = 0;
OVERLAPPED overlapped = {0};
overlapped.hEvent = device->hReadWrite;
if (!WriteFile (device->hFile, data, size, NULL, &overlapped)) {
DWORD errcode = GetLastError ();
if (errcode != ERROR_IO_PENDING) {
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
}
if (!GetOverlappedResult (device->hFile, &overlapped, &dwWritten, TRUE)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
status = syserror (errcode);
goto out;
}
if (dwWritten != size) {
status = DC_STATUS_TIMEOUT;
}
out:
if (actual)
*actual = dwWritten;
return status;
}
static dc_status_t
dc_serial_ioctl (dc_iostream_t *abstract, unsigned int request, void *data, size_t size)
{
switch (request) {
case DC_IOCTL_SERIAL_SET_LATENCY:
return DC_STATUS_SUCCESS;
default:
return DC_STATUS_UNSUPPORTED;
}
}
static dc_status_t
dc_serial_purge (dc_iostream_t *abstract, dc_direction_t direction)
{
dc_serial_t *device = (dc_serial_t *) abstract;
DWORD flags = 0;
switch (direction) {
case DC_DIRECTION_INPUT:
flags = PURGE_RXABORT | PURGE_RXCLEAR;
break;
case DC_DIRECTION_OUTPUT:
flags = PURGE_TXABORT | PURGE_TXCLEAR;
break;
case DC_DIRECTION_ALL:
flags = PURGE_RXABORT | PURGE_RXCLEAR | PURGE_TXABORT | PURGE_TXCLEAR;
break;
default:
return DC_STATUS_INVALIDARGS;
}
if (!PurgeComm (device->hFile, flags)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_flush (dc_iostream_t *abstract)
{
dc_serial_t *device = (dc_serial_t *) abstract;
if (!FlushFileBuffers (device->hFile)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_break (dc_iostream_t *abstract, unsigned int level)
{
dc_serial_t *device = (dc_serial_t *) abstract;
if (level) {
if (!SetCommBreak (device->hFile)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
} else {
if (!ClearCommBreak (device->hFile)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_dtr (dc_iostream_t *abstract, unsigned int level)
{
dc_serial_t *device = (dc_serial_t *) abstract;
int status = (level ? SETDTR : CLRDTR);
if (!EscapeCommFunction (device->hFile, status)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_set_rts (dc_iostream_t *abstract, unsigned int level)
{
dc_serial_t *device = (dc_serial_t *) abstract;
int status = (level ? SETRTS : CLRRTS);
if (!EscapeCommFunction (device->hFile, status)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_get_available (dc_iostream_t *abstract, size_t *value)
{
dc_serial_t *device = (dc_serial_t *) abstract;
COMSTAT stats;
if (!ClearCommError (device->hFile, NULL, &stats)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
if (value)
*value = stats.cbInQue;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_get_lines (dc_iostream_t *abstract, unsigned int *value)
{
dc_serial_t *device = (dc_serial_t *) abstract;
unsigned int lines = 0;
DWORD stats = 0;
if (!GetCommModemStatus (device->hFile, &stats)) {
DWORD errcode = GetLastError ();
SYSERROR (abstract->context, errcode);
return syserror (errcode);
}
if (stats & MS_RLSD_ON)
lines |= DC_LINE_DCD;
if (stats & MS_CTS_ON)
lines |= DC_LINE_CTS;
if (stats & MS_DSR_ON)
lines |= DC_LINE_DSR;
if (stats & MS_RING_ON)
lines |= DC_LINE_RNG;
if (value)
*value = lines;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dc_serial_sleep (dc_iostream_t *abstract, unsigned int timeout)
{
Sleep (timeout);
return DC_STATUS_SUCCESS;
}