921 lines
25 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2009 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdio.h> // fopen, fwrite, fclose
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#ifdef _MSC_VER
#define snprintf _snprintf
#define strcasecmp _stricmp
#define strncasecmp _strnicmp
#endif
#ifdef _WIN32
#define DC_TICKS_FORMAT "%I64d"
#else
#define DC_TICKS_FORMAT "%lld"
#endif
#include <libdivecomputer/context.h>
#include <libdivecomputer/device.h>
#include <libdivecomputer/parser.h>
#include "utils.h"
#include "common.h"
static const char *g_cachedir = NULL;
static int g_cachedir_read = 1;
typedef struct device_data_t {
dc_event_devinfo_t devinfo;
dc_event_clock_t clock;
} device_data_t;
typedef struct dive_data_t {
dc_device_t *device;
FILE* fp;
unsigned int number;
dc_buffer_t *fingerprint;
} dive_data_t;
typedef struct sample_data_t {
FILE* fp;
unsigned int nsamples;
} sample_data_t;
typedef struct backend_table_t {
const char *name;
dc_family_t type;
} backend_table_t;
static const backend_table_t g_backends[] = {
{"solution", DC_FAMILY_SUUNTO_SOLUTION},
{"eon", DC_FAMILY_SUUNTO_EON},
{"vyper", DC_FAMILY_SUUNTO_VYPER},
{"vyper2", DC_FAMILY_SUUNTO_VYPER2},
{"d9", DC_FAMILY_SUUNTO_D9},
{"aladin", DC_FAMILY_UWATEC_ALADIN},
{"memomouse", DC_FAMILY_UWATEC_MEMOMOUSE},
{"smart", DC_FAMILY_UWATEC_SMART},
{"meridian", DC_FAMILY_UWATEC_MERIDIAN},
{"sensus", DC_FAMILY_REEFNET_SENSUS},
{"sensuspro", DC_FAMILY_REEFNET_SENSUSPRO},
{"sensusultra", DC_FAMILY_REEFNET_SENSUSULTRA},
{"vtpro", DC_FAMILY_OCEANIC_VTPRO},
{"veo250", DC_FAMILY_OCEANIC_VEO250},
{"atom2", DC_FAMILY_OCEANIC_ATOM2},
{"nemo", DC_FAMILY_MARES_NEMO},
{"puck", DC_FAMILY_MARES_PUCK},
{"darwin", DC_FAMILY_MARES_DARWIN},
{"iconhd", DC_FAMILY_MARES_ICONHD},
{"ostc", DC_FAMILY_HW_OSTC},
{"frog", DC_FAMILY_HW_FROG},
{"ostc3", DC_FAMILY_HW_OSTC3},
{"edy", DC_FAMILY_CRESSI_EDY},
{"leonardo", DC_FAMILY_CRESSI_LEONARDO},
{"n2ition3", DC_FAMILY_ZEAGLE_N2ITION3},
{"cobalt", DC_FAMILY_ATOMICS_COBALT},
{"predator", DC_FAMILY_SHEARWATER_PREDATOR},
{"petrel", DC_FAMILY_SHEARWATER_PETREL},
{"nitekq", DC_FAMILY_DIVERITE_NITEKQ},
};
static dc_family_t
lookup_type (const char *name)
{
unsigned int nbackends = sizeof (g_backends) / sizeof (g_backends[0]);
for (unsigned int i = 0; i < nbackends; ++i) {
if (strcmp (name, g_backends[i].name) == 0)
return g_backends[i].type;
}
return DC_FAMILY_NULL;
}
static const char *
lookup_name (dc_family_t type)
{
unsigned int nbackends = sizeof (g_backends) / sizeof (g_backends[0]);
for (unsigned int i = 0; i < nbackends; ++i) {
if (g_backends[i].type == type)
return g_backends[i].name;
}
return NULL;
}
static unsigned char
hex2dec (unsigned char value)
{
if (value >= '0' && value <= '9')
return value - '0';
else if (value >= 'A' && value <= 'F')
return value - 'A' + 10;
else if (value >= 'a' && value <= 'f')
return value - 'a' + 10;
else
return 0;
}
static dc_buffer_t *
fpconvert (const char *fingerprint)
{
// Get the length of the fingerprint data.
size_t nbytes = (fingerprint ? strlen (fingerprint) / 2 : 0);
if (nbytes == 0)
return NULL;
// Allocate a memory buffer.
dc_buffer_t *buffer = dc_buffer_new (nbytes);
// Convert the hexadecimal string.
for (unsigned int i = 0; i < nbytes; ++i) {
unsigned char msn = hex2dec (fingerprint[i * 2 + 0]);
unsigned char lsn = hex2dec (fingerprint[i * 2 + 1]);
unsigned char byte = (msn << 4) + lsn;
dc_buffer_append (buffer, &byte, 1);
}
return buffer;
}
static dc_buffer_t *
fpread (const char *dirname, dc_family_t backend, unsigned int serial)
{
// Build the filename.
char filename[1024] = {0};
snprintf (filename, sizeof (filename), "%s/%s-%08X.bin",
dirname, lookup_name (backend), serial);
// Open the fingerprint file.
FILE *fp = fopen (filename, "rb");
if (fp == NULL)
return NULL;
// Allocate a memory buffer.
dc_buffer_t *buffer = dc_buffer_new (0);
// Read the entire file into the buffer.
size_t n = 0;
unsigned char block[1024] = {0};
while ((n = fread (block, 1, sizeof (block), fp)) > 0) {
dc_buffer_append (buffer, block, n);
}
// Close the file.
fclose (fp);
return buffer;
}
static void
fpwrite (dc_buffer_t *buffer, const char *dirname, dc_family_t backend, unsigned int serial)
{
// Check the buffer size.
if (dc_buffer_get_size (buffer) == 0)
return;
// Build the filename.
char filename[1024] = {0};
snprintf (filename, sizeof (filename), "%s/%s-%08X.bin",
dirname, lookup_name (backend), serial);
// Open the fingerprint file.
FILE *fp = fopen (filename, "wb");
if (fp == NULL)
return;
// Write the fingerprint data.
fwrite (dc_buffer_get_data (buffer), 1, dc_buffer_get_size (buffer), fp);
// Close the file.
fclose (fp);
}
volatile sig_atomic_t g_cancel = 0;
void
sighandler (int signum)
{
#ifndef _WIN32
// Restore the default signal handler.
signal (signum, SIG_DFL);
#endif
g_cancel = 1;
}
static int
cancel_cb (void *userdata)
{
return g_cancel;
}
void
sample_cb (dc_sample_type_t type, dc_sample_value_t value, void *userdata)
{
static const char *events[] = {
"none", "deco", "rbt", "ascent", "ceiling", "workload", "transmitter",
"violation", "bookmark", "surface", "safety stop", "gaschange",
"safety stop (voluntary)", "safety stop (mandatory)", "deepstop",
"ceiling (safety stop)", "floor", "divetime", "maxdepth",
"OLF", "PO2", "airtime", "rgbm", "heading", "tissue level warning",
"gaschange2"};
static const char *decostop[] = {
"ndl", "safety", "deco", "deep"};
sample_data_t *sampledata = (sample_data_t *) userdata;
switch (type) {
case DC_SAMPLE_TIME:
if (sampledata->nsamples++)
fprintf (sampledata->fp, "</sample>\n");
fprintf (sampledata->fp, "<sample>\n");
fprintf (sampledata->fp, " <time>%02u:%02u</time>\n", value.time / 60, value.time % 60);
break;
case DC_SAMPLE_DEPTH:
fprintf (sampledata->fp, " <depth>%.2f</depth>\n", value.depth);
break;
case DC_SAMPLE_PRESSURE:
fprintf (sampledata->fp, " <pressure tank=\"%u\">%.2f</pressure>\n", value.pressure.tank, value.pressure.value);
break;
case DC_SAMPLE_TEMPERATURE:
fprintf (sampledata->fp, " <temperature>%.2f</temperature>\n", value.temperature);
break;
case DC_SAMPLE_EVENT:
if (value.event.type == SAMPLE_EVENT_GASCHANGE2) {
fprintf (sampledata->fp, " <gaschange o2=\"%u\" he=\"%u\" />\n",
value.event.value & 0xFFFF, (value.event.value >> 16) & 0xFFFF);
} else if (value.event.type == SAMPLE_EVENT_GASCHANGE) {
fprintf (sampledata->fp, " <gaschange o2=\"%u\" />\n",
value.event.value);
} else {
fprintf (sampledata->fp, " <event type=\"%u\" time=\"%u\" flags=\"%u\" value=\"%u\">%s</event>\n",
value.event.type, value.event.time, value.event.flags, value.event.value, events[value.event.type]);
}
break;
case DC_SAMPLE_RBT:
fprintf (sampledata->fp, " <rbt>%u</rbt>\n", value.rbt);
break;
case DC_SAMPLE_HEARTBEAT:
fprintf (sampledata->fp, " <heartbeat>%u</heartbeat>\n", value.heartbeat);
break;
case DC_SAMPLE_BEARING:
fprintf (sampledata->fp, " <bearing>%u</bearing>\n", value.bearing);
break;
case DC_SAMPLE_VENDOR:
fprintf (sampledata->fp, " <vendor type=\"%u\" size=\"%u\">", value.vendor.type, value.vendor.size);
for (unsigned int i = 0; i < value.vendor.size; ++i)
fprintf (sampledata->fp, "%02X", ((unsigned char *) value.vendor.data)[i]);
fprintf (sampledata->fp, "</vendor>\n");
break;
case DC_SAMPLE_SETPOINT:
fprintf (sampledata->fp, " <setpoint>%.2f</setpoint>\n", value.setpoint);
break;
case DC_SAMPLE_PPO2:
fprintf (sampledata->fp, " <ppo2>%.2f</ppo2>\n", value.ppo2);
break;
case DC_SAMPLE_CNS:
fprintf (sampledata->fp, " <cns>%.2f</cns>\n", value.cns);
break;
case DC_SAMPLE_DECO:
fprintf (sampledata->fp, " <deco time=\"%u\" depth=\"%.2f\">%s</deco>\n",
value.deco.time, value.deco.depth, decostop[value.deco.type]);
break;
default:
break;
}
}
static dc_status_t
doparse (FILE *fp, dc_device_t *device, const unsigned char data[], unsigned int size)
{
// Create the parser.
message ("Creating the parser.\n");
dc_parser_t *parser = NULL;
dc_status_t rc = dc_parser_new (&parser, device);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error creating the parser.");
return rc;
}
// Register the data.
message ("Registering the data.\n");
rc = dc_parser_set_data (parser, data, size);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error registering the data.");
dc_parser_destroy (parser);
return rc;
}
// Parse the datetime.
message ("Parsing the datetime.\n");
dc_datetime_t dt = {0};
rc = dc_parser_get_datetime (parser, &dt);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the datetime.");
dc_parser_destroy (parser);
return rc;
}
fprintf (fp, "<datetime>%04i-%02i-%02i %02i:%02i:%02i</datetime>\n",
dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second);
// Parse the divetime.
message ("Parsing the divetime.\n");
unsigned int divetime = 0;
rc = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the divetime.");
dc_parser_destroy (parser);
return rc;
}
fprintf (fp, "<divetime>%02u:%02u</divetime>\n",
divetime / 60, divetime % 60);
// Parse the temperature.
message ("Parsing the temperature.\n");
for (unsigned int i = 0; i < 3; ++i) {
dc_field_type_t fields[] = {DC_FIELD_TEMPERATURE_SURFACE,
DC_FIELD_TEMPERATURE_MINIMUM,
DC_FIELD_TEMPERATURE_MAXIMUM};
const char *names[] = {"surface", "minimum", "maximum"};
double temperature = 0.0;
rc = dc_parser_get_field (parser, fields[i], 0, &temperature);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the temperature.");
dc_parser_destroy (parser);
return rc;
}
if (rc != DC_STATUS_UNSUPPORTED) {
fprintf (fp, "<temperature type=\"%s\">%.1f</temperature>\n",
names[i], temperature);
}
}
// Parse the maxdepth.
message ("Parsing the maxdepth.\n");
double maxdepth = 0.0;
rc = dc_parser_get_field (parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the maxdepth.");
dc_parser_destroy (parser);
return rc;
}
fprintf (fp, "<maxdepth>%.2f</maxdepth>\n",
maxdepth);
// Parse the gas mixes.
message ("Parsing the gas mixes.\n");
unsigned int ngases = 0;
rc = dc_parser_get_field (parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the gas mix count.");
dc_parser_destroy (parser);
return rc;
}
for (unsigned int i = 0; i < ngases; ++i) {
dc_gasmix_t gasmix = {0};
rc = dc_parser_get_field (parser, DC_FIELD_GASMIX, i, &gasmix);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the gas mix.");
dc_parser_destroy (parser);
return rc;
}
fprintf (fp,
"<gasmix>\n"
" <he>%.1f</he>\n"
" <o2>%.1f</o2>\n"
" <n2>%.1f</n2>\n"
"</gasmix>\n",
gasmix.helium * 100.0,
gasmix.oxygen * 100.0,
gasmix.nitrogen * 100.0);
}
// Parse the salinity.
message ("Parsing the salinity.\n");
dc_salinity_t salinity = {DC_WATER_FRESH, 0.0};
rc = dc_parser_get_field (parser, DC_FIELD_SALINITY, 0, &salinity);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the salinity.");
dc_parser_destroy (parser);
return rc;
}
if (rc != DC_STATUS_UNSUPPORTED) {
fprintf (fp, "<salinity type=\"%u\">%.1f</salinity>\n",
salinity.type, salinity.density);
}
// Parse the atmospheric pressure.
message ("Parsing the atmospheric pressure.\n");
double atmospheric = 0.0;
rc = dc_parser_get_field (parser, DC_FIELD_ATMOSPHERIC, 0, &atmospheric);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
WARNING ("Error parsing the atmospheric pressure.");
dc_parser_destroy (parser);
return rc;
}
if (rc != DC_STATUS_UNSUPPORTED) {
fprintf (fp, "<atmospheric>%.5f</atmospheric>\n",
atmospheric);
}
// Initialize the sample data.
sample_data_t sampledata = {0};
sampledata.nsamples = 0;
sampledata.fp = fp;
// Parse the sample data.
message ("Parsing the sample data.\n");
rc = dc_parser_samples_foreach (parser, sample_cb, &sampledata);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error parsing the sample data.");
dc_parser_destroy (parser);
return rc;
}
if (sampledata.nsamples)
fprintf (fp, "</sample>\n");
// Destroy the parser.
message ("Destroying the parser.\n");
rc = dc_parser_destroy (parser);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error destroying the parser.");
return rc;
}
return DC_STATUS_SUCCESS;
}
static void
event_cb (dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
const dc_event_progress_t *progress = (dc_event_progress_t *) data;
const dc_event_devinfo_t *devinfo = (dc_event_devinfo_t *) data;
const dc_event_clock_t *clock = (dc_event_clock_t *) data;
const dc_event_vendor_t *vendor = (dc_event_vendor_t *) data;
device_data_t *devdata = (device_data_t *) userdata;
switch (event) {
case DC_EVENT_WAITING:
message ("Event: waiting for user action\n");
break;
case DC_EVENT_PROGRESS:
message ("Event: progress %3.2f%% (%u/%u)\n",
100.0 * (double) progress->current / (double) progress->maximum,
progress->current, progress->maximum);
break;
case DC_EVENT_DEVINFO:
devdata->devinfo = *devinfo;
message ("Event: model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)\n",
devinfo->model, devinfo->model,
devinfo->firmware, devinfo->firmware,
devinfo->serial, devinfo->serial);
if (g_cachedir && g_cachedir_read) {
dc_buffer_t *fingerprint = fpread (g_cachedir, dc_device_get_type (device), devinfo->serial);
dc_device_set_fingerprint (device,
dc_buffer_get_data (fingerprint),
dc_buffer_get_size (fingerprint));
dc_buffer_free (fingerprint);
}
break;
case DC_EVENT_CLOCK:
devdata->clock = *clock;
message ("Event: systime=" DC_TICKS_FORMAT ", devtime=%u\n",
clock->systime, clock->devtime);
break;
case DC_EVENT_VENDOR:
message ("Event: vendor=");
for (unsigned int i = 0; i < vendor->size; ++i)
message ("%02X", vendor->data[i]);
message ("\n");
break;
default:
break;
}
}
static int
dive_cb (const unsigned char *data, unsigned int size, const unsigned char *fingerprint, unsigned int fsize, void *userdata)
{
dive_data_t *divedata = (dive_data_t *) userdata;
divedata->number++;
message ("Dive: number=%u, size=%u, fingerprint=", divedata->number, size);
for (unsigned int i = 0; i < fsize; ++i)
message ("%02X", fingerprint[i]);
message ("\n");
if (divedata->number == 1) {
divedata->fingerprint = dc_buffer_new (fsize);
dc_buffer_append (divedata->fingerprint, fingerprint, fsize);
}
if (divedata->fp) {
fprintf (divedata->fp, "<dive>\n<number>%u</number>\n<size>%u</size>\n<fingerprint>", divedata->number, size);
for (unsigned int i = 0; i < fsize; ++i)
fprintf (divedata->fp, "%02X", fingerprint[i]);
fprintf (divedata->fp, "</fingerprint>\n");
doparse (divedata->fp, divedata->device, data, size);
fprintf (divedata->fp, "</dive>\n");
}
return 1;
}
static void
usage (const char *filename)
{
#ifndef _MSC_VER
fprintf (stderr, "Usage:\n\n");
fprintf (stderr, " %s [options] devname\n\n", filename);
fprintf (stderr, "Options:\n\n");
fprintf (stderr, " -n name Set device name (required).\n");
fprintf (stderr, " -b name Set backend name (required).\n");
fprintf (stderr, " -t model Set model code.\n");
fprintf (stderr, " -f hexdata Set fingerprint data.\n");
fprintf (stderr, " -l logfile Set logfile.\n");
fprintf (stderr, " -d filename Download dives.\n");
fprintf (stderr, " -m filename Download memory dump.\n");
fprintf (stderr, " -c cachedir Set cache directory.\n");
fprintf (stderr, " -h Show this help message.\n\n");
#else
fprintf (stderr, "Usage:\n\n");
fprintf (stderr, " %s backend devname\n\n", filename);
#endif
fprintf (stderr, "Supported backends:\n\n");
unsigned int nbackends = sizeof (g_backends) / sizeof (g_backends[0]);
for (unsigned int i = 0; i < nbackends; ++i) {
fprintf (stderr, "%s", g_backends[i].name);
if (i != nbackends - 1)
fprintf (stderr, ", ");
else
fprintf (stderr, "\n\n");
}
fprintf (stderr, "Supported devices:\n\n");
dc_iterator_t *iterator = NULL;
dc_descriptor_t *descriptor = NULL;
dc_descriptor_iterator (&iterator);
while (dc_iterator_next (iterator, &descriptor) == DC_STATUS_SUCCESS) {
fprintf (stderr, " %s %s\n",
dc_descriptor_get_vendor (descriptor),
dc_descriptor_get_product (descriptor));
dc_descriptor_free (descriptor);
}
dc_iterator_free (iterator);
}
static dc_status_t
search (dc_descriptor_t **out, const char *name, dc_family_t backend, unsigned int model)
{
dc_status_t rc = DC_STATUS_SUCCESS;
dc_iterator_t *iterator = NULL;
rc = dc_descriptor_iterator (&iterator);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error creating the device descriptor iterator.");
return rc;
}
dc_descriptor_t *descriptor = NULL, *current = NULL;
while ((rc = dc_iterator_next (iterator, &descriptor)) == DC_STATUS_SUCCESS) {
if (name) {
const char *vendor = dc_descriptor_get_vendor (descriptor);
const char *product = dc_descriptor_get_product (descriptor);
size_t n = strlen (vendor);
if (strncasecmp (name, vendor, n) == 0 && name[n] == ' ' &&
strcasecmp (name + n + 1, product) == 0)
{
current = descriptor;
break;
} else if (strcasecmp (name, product) == 0) {
current = descriptor;
break;
}
} else {
if (backend == dc_descriptor_get_type (descriptor)) {
if (model == dc_descriptor_get_model (descriptor)) {
// Exact match found. Return immediately.
dc_descriptor_free (current);
current = descriptor;
break;
} else {
// Possible match found. Keep searching for an exact match.
// If no exact match is found, the first match is returned.
if (current == NULL) {
current = descriptor;
descriptor = NULL;
}
}
}
}
dc_descriptor_free (descriptor);
}
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_DONE) {
dc_descriptor_free (current);
dc_iterator_free (iterator);
WARNING ("Error iterating the device descriptors.");
return rc;
}
dc_iterator_free (iterator);
*out = current;
return DC_STATUS_SUCCESS;
}
static dc_status_t
dowork (dc_context_t *context, dc_descriptor_t *descriptor, const char *devname, const char *rawfile, const char *xmlfile, int memory, int dives, dc_buffer_t *fingerprint)
{
dc_status_t rc = DC_STATUS_SUCCESS;
// Initialize the device data.
device_data_t devdata = {{0}};
// Open the device.
message ("Opening the device (%s %s, %s).\n",
dc_descriptor_get_vendor (descriptor),
dc_descriptor_get_product (descriptor),
devname ? devname : "null");
dc_device_t *device = NULL;
rc = dc_device_open (&device, context, descriptor, devname);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error opening device.");
return rc;
}
// Register the event handler.
message ("Registering the event handler.\n");
int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK | DC_EVENT_VENDOR;
rc = dc_device_set_events (device, events, event_cb, &devdata);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error registering the event handler.");
dc_device_close (device);
return rc;
}
// Register the cancellation handler.
message ("Registering the cancellation handler.\n");
rc = dc_device_set_cancel (device, cancel_cb, NULL);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error registering the cancellation handler.");
dc_device_close (device);
return rc;
}
// Register the fingerprint data.
if (fingerprint) {
message ("Registering the fingerprint data.\n");
rc = dc_device_set_fingerprint (device, dc_buffer_get_data (fingerprint), dc_buffer_get_size (fingerprint));
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error registering the fingerprint data.");
dc_device_close (device);
return rc;
}
}
if (memory) {
// Allocate a memory buffer.
dc_buffer_t *buffer = dc_buffer_new (0);
// Download the memory dump.
message ("Downloading the memory dump.\n");
rc = dc_device_dump (device, buffer);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error downloading the memory dump.");
dc_buffer_free (buffer);
dc_device_close (device);
return rc;
}
// Write the memory dump to disk.
FILE* fp = fopen (rawfile, "wb");
if (fp != NULL) {
fwrite (dc_buffer_get_data (buffer), 1, dc_buffer_get_size (buffer), fp);
fclose (fp);
}
// Free the memory buffer.
dc_buffer_free (buffer);
}
if (dives) {
// Initialize the dive data.
dive_data_t divedata = {0};
divedata.device = device;
divedata.fingerprint = NULL;
divedata.number = 0;
// Open the output file.
divedata.fp = fopen (xmlfile, "w");
if (divedata.fp) {
fprintf (divedata.fp, "<device>\n");
}
// Download the dives.
message ("Downloading the dives.\n");
rc = dc_device_foreach (device, dive_cb, &divedata);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error downloading the dives.");
dc_buffer_free (divedata.fingerprint);
if (divedata.fp) fclose (divedata.fp);
dc_device_close (device);
return rc;
}
if (divedata.fp) {
fprintf (divedata.fp, "</device>\n");
}
// Store the fingerprint data.
if (g_cachedir) {
fpwrite (divedata.fingerprint, g_cachedir, dc_device_get_type (device), devdata.devinfo.serial);
}
// Free the fingerprint buffer.
dc_buffer_free (divedata.fingerprint);
// Close the output file.
if (divedata.fp) fclose (divedata.fp);
}
// Close the device.
message ("Closing the device.\n");
rc = dc_device_close (device);
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error closing the device.");
return rc;
}
return DC_STATUS_SUCCESS;
}
int
main (int argc, char *argv[])
{
// Default values.
dc_family_t backend = DC_FAMILY_NULL;
dc_loglevel_t loglevel = DC_LOGLEVEL_WARNING;
const char *name = NULL;
const char *logfile = "output.log";
const char *rawfile = "output.bin";
const char *xmlfile = "output.xml";
const char *devname = NULL;
const char *fingerprint = NULL;
unsigned int model = 0;
int memory = 0, dives = 0;
#ifndef _MSC_VER
// Parse command-line options.
int opt = 0;
while ((opt = getopt (argc, argv, "n:b:t:f:l:m:d:c:vh")) != -1) {
switch (opt) {
case 'n':
name = optarg;
break;
case 'b':
backend = lookup_type (optarg);
break;
case 't':
model = strtoul (optarg, NULL, 0);
break;
case 'f':
fingerprint = optarg;
g_cachedir_read = 0;
break;
case 'l':
logfile = optarg;
break;
case 'v':
loglevel++;
break;
case 'm':
memory = 1;
rawfile = optarg;
break;
case 'd':
dives = 1;
xmlfile = optarg;
break;
case 'c':
g_cachedir = optarg;
break;
case '?':
case 'h':
default:
usage (argv[0]);
return EXIT_FAILURE;
}
}
if (optind < argc)
devname = argv[optind];
#else
if (argc > 1)
backend = lookup_type (argv[1]);
if (argc > 2)
devname = argv[2];
#endif
// Set the default action.
if (!memory && !dives) {
memory = 1;
dives = 1;
}
signal (SIGINT, sighandler);
message_set_logfile (logfile);
dc_context_t *context = NULL;
dc_status_t rc = dc_context_new (&context);
if (rc != DC_STATUS_SUCCESS) {
message_set_logfile (NULL);
return EXIT_FAILURE;
}
dc_context_set_loglevel (context, loglevel);
dc_context_set_logfunc (context, logfunc, NULL);
/* Search for a matching device descriptor. */
dc_descriptor_t *descriptor = NULL;
rc = search (&descriptor, name, backend, model);
if (rc != DC_STATUS_SUCCESS) {
message_set_logfile (NULL);
return EXIT_FAILURE;
}
/* Fail if no device descriptor found. */
if (descriptor == NULL) {
WARNING ("No matching device found.");
usage (argv[0]);
message_set_logfile (NULL);
return EXIT_FAILURE;
}
dc_buffer_t *fp = fpconvert (fingerprint);
rc = dowork (context, descriptor, devname, rawfile, xmlfile, memory, dives, fp);
dc_buffer_free (fp);
message ("Result: %s\n", errmsg (rc));
dc_descriptor_free (descriptor);
dc_context_free (context);
message_set_logfile (NULL);
return rc != DC_STATUS_SUCCESS ? EXIT_FAILURE : EXIT_SUCCESS;
}