libdivecomputer/src/mclean_extreme.c
Jef Driesen 034819cd2d Fix the McLean Extreme fingerprint feature
Currently the fingerprint feature uses the first 7 bytes of the computer
configuration data. Since this information does not uniquely identify a
dive, and is actually often identical for several dives, no new dives
are detected anymore. Fixed by using the date/time timestamp at the
start of the dive configuration data instead.

Reported-by: David Carron <david_de_carron@hotmail.com>
2021-02-08 11:01:24 +01:00

596 lines
16 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2020 Jef Driesen, David Carron
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include "mclean_extreme.h"
#include "context-private.h"
#include "device-private.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &mclean_extreme_device_vtable)
#define MAXRETRIES 14
#define STX 0x7E
#define CMD_SERIALNUMBER 0x91
#define CMD_COMPUTER 0xA0
#define CMD_SET_COMPUTER 0xA1
#define CMD_DIVE 0xA3
#define CMD_CLOSE 0xAA
#define CMD_SET_TIME 0xAC
#define CMD_FIRMWARE 0xAD
#define SZ_PACKET 512
#define SZ_FINGERPRINT 4
#define SZ_CFG 0x002D
#define SZ_COMPUTER (SZ_CFG + 0x6A)
#define SZ_HEADER (SZ_CFG + 0x31)
#define SZ_SAMPLE 0x0004
#define EPOCH 946684800 // 2000-01-01 00:00:00 UTC
#define NSTEPS 1000
#define STEP(i,n) (NSTEPS * (i) / (n))
typedef struct mclean_extreme_device_t {
dc_device_t base;
dc_iostream_t *iostream;
unsigned char fingerprint[SZ_FINGERPRINT];
} mclean_extreme_device_t;
static dc_status_t mclean_extreme_device_set_fingerprint(dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t mclean_extreme_device_timesync(dc_device_t *abstract, const dc_datetime_t *datetime);
static dc_status_t mclean_extreme_device_foreach(dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t mclean_extreme_device_close(dc_device_t *abstract);
static const dc_device_vtable_t mclean_extreme_device_vtable = {
sizeof(mclean_extreme_device_t),
DC_FAMILY_MCLEAN_EXTREME,
mclean_extreme_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
NULL, /* dump */
mclean_extreme_device_foreach, /* foreach */
mclean_extreme_device_timesync, /* timesync */
mclean_extreme_device_close, /* close */
};
static unsigned int
hashcode (const unsigned char data[], size_t size)
{
unsigned int result = 0;
for (size_t i = 0; i < size; ++i) {
result *= 31;
result += data[i];
}
return result;
}
static unsigned short
checksum_crc(const unsigned char data[], unsigned int size, unsigned short init)
{
unsigned short crc = init;
for (unsigned int i = 0; i < size; ++i) {
crc ^= data[i] << 8;
if (crc & 0x8000) {
crc <<= 1;
crc ^= 0x1021;
} else {
crc <<= 1;
}
}
return crc;
}
static dc_status_t
mclean_extreme_send(mclean_extreme_device_t *device, unsigned char cmd, const unsigned char data[], size_t size)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *)device;
unsigned short crc = 0;
if (device_is_cancelled(abstract))
return DC_STATUS_CANCELLED;
if (size > SZ_PACKET)
return DC_STATUS_INVALIDARGS;
// Setup the data packet
unsigned char packet[SZ_PACKET + 11] = {
STX,
0x00,
(size >> 0) & 0xFF,
(size >> 8) & 0xFF,
(size >> 16) & 0xFF,
(size >> 24) & 0xFF,
cmd,
};
if (size) {
memcpy(packet + 7, data, size);
}
crc = checksum_crc(packet + 1, size + 6, 0);
packet[size + 7] = (crc >> 8) & 0xFF;
packet[size + 8] = (crc) & 0xFF;
packet[size + 9] = 0x00;
packet[size + 10] = 0x00;
// Give the dive computer some extra time.
dc_iostream_sleep(device->iostream, 300);
// Send the data packet.
status = dc_iostream_write(device->iostream, packet, size + 11, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to send the command.");
return status;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mclean_extreme_receive(mclean_extreme_device_t *device, unsigned char rsp, unsigned char data[], size_t size, size_t *actual)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *)device;
unsigned char header[7];
unsigned int nretries = 0;
// Read the packet start byte.
// Unfortunately it takes a relative long time, about 6-8 seconds,
// before the STX byte arrives. Hence the standard timeout of one
// second is not sufficient, and we need to retry a few times on
// timeout. The advantage over using a single read operation with a
// large timeout is that we can give the user a chance to cancel the
// operation.
while (1) {
status = dc_iostream_read(device->iostream, header + 0, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
if (status != DC_STATUS_TIMEOUT) {
ERROR(abstract->context, "Failed to receive the packet start byte.");
return status;
}
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
return status;
// Cancel if requested by the user.
if (device_is_cancelled(abstract))
return DC_STATUS_CANCELLED;
// Try again.
continue;
}
if (header[0] == STX)
break;
// Reset the retry counter.
nretries = 0;
}
// Read the packet header.
status = dc_iostream_read(device->iostream, header + 1, sizeof(header) - 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to receive the packet header.");
return status;
}
// Verify the type byte.
unsigned int type = header[1];
if (type != 0x00) {
ERROR(abstract->context, "Unexpected type byte (%02x).", type);
return DC_STATUS_PROTOCOL;
}
// Verify the length.
unsigned int length = array_uint32_le(header + 2);
if (length > size) {
ERROR(abstract->context, "Unexpected packet length (%u).", length);
return DC_STATUS_PROTOCOL;
}
// Get the command type.
unsigned int cmd = header[6];
if (cmd != rsp) {
ERROR(abstract->context, "Unexpected command byte (%02x).", cmd);
return DC_STATUS_PROTOCOL;
}
size_t nbytes = 0;
while (nbytes < length) {
// Set the maximum packet size.
size_t len = 1000;
// Limit the packet size to the total size.
if (nbytes + len > length)
len = length - nbytes;
// Read the packet payload.
status = dc_iostream_read(device->iostream, data + nbytes, len, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to receive the packet payload.");
return status;
}
nbytes += len;
}
// Read the packet checksum.
unsigned char checksum[4];
status = dc_iostream_read(device->iostream, checksum, sizeof(checksum), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to receive the packet checksum.");
return status;
}
// Verify the checksum.
unsigned short crc = array_uint16_be(checksum);
unsigned short ccrc = 0;
ccrc = checksum_crc(header + 1, sizeof(header) - 1, ccrc);
ccrc = checksum_crc(data, length, ccrc);
if (crc != ccrc || checksum[2] != 0x00 || checksum[3] != 0) {
ERROR(abstract->context, "Unexpected packet checksum.");
return DC_STATUS_PROTOCOL;
}
if (actual == NULL) {
// Verify the actual length.
if (length != size) {
ERROR (abstract->context, "Unexpected packet length (%u).", length);
return DC_STATUS_PROTOCOL;
}
} else {
// Return the actual length.
*actual = length;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mclean_extreme_transfer(mclean_extreme_device_t *device, unsigned char cmd, const unsigned char data[], size_t size, unsigned char answer[], size_t asize, size_t *actual)
{
dc_status_t status = DC_STATUS_SUCCESS;
// Send the command
status = mclean_extreme_send(device, cmd, data, size);
if (status != DC_STATUS_SUCCESS) {
return status;
}
// Receive the answer
if (asize) {
status = mclean_extreme_receive(device, cmd, answer, asize, actual);
if (status != DC_STATUS_SUCCESS) {
return status;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mclean_extreme_readdive (dc_device_t *abstract, dc_event_progress_t *progress, unsigned int idx, dc_buffer_t *buffer)
{
dc_status_t status = DC_STATUS_SUCCESS;
mclean_extreme_device_t *device = (mclean_extreme_device_t *) abstract;
// Erase the buffer.
dc_buffer_clear (buffer);
// Encode the logbook ID.
unsigned char id[] = {
(idx ) & 0xFF,
(idx >> 8) & 0xFF,
};
// Update and emit a progress event.
unsigned int initial = 0;
if (progress) {
initial = progress->current;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
// Request the dive.
status = mclean_extreme_send (device, CMD_DIVE, id, sizeof(id));
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the dive command.");
return status;
}
// Read the dive header.
unsigned char header[SZ_HEADER];
status = mclean_extreme_receive (device, CMD_DIVE, header, sizeof(header), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the dive header.");
return status;
}
// Verify the format version.
unsigned int format = header[0x0000];
if (format != 0) {
ERROR(abstract->context, "Unrecognised dive format.");
return DC_STATUS_DATAFORMAT;
}
// Get the number of samples.
unsigned int nsamples = array_uint16_le (header + 0x005C);
// Calculate the total size.
unsigned int size = sizeof(header) + nsamples * SZ_SAMPLE;
// Update and emit a progress event.
if (progress) {
progress->current = initial + STEP(sizeof(header), size);
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
// Allocate memory for the dive.
if (!dc_buffer_resize (buffer, size)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Cache the pointer.
unsigned char *data = dc_buffer_get_data(buffer);
// Append the header.
memcpy (data, header, sizeof(header));
unsigned int nbytes = sizeof(header);
while (nbytes < size) {
// Get the maximum packet size.
size_t len = size - nbytes;
// Read the dive samples.
status = mclean_extreme_receive (device, CMD_DIVE, data + nbytes, len, &len);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the dive samples.");
return status;
}
nbytes += len;
// Update and emit a progress event.
if (progress) {
progress->current = initial + STEP(nbytes, size);
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
mclean_extreme_device_open(dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream)
{
dc_status_t status = DC_STATUS_SUCCESS;
mclean_extreme_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (mclean_extreme_device_t *)dc_device_allocate(context, &mclean_extreme_device_vtable);
if (device == NULL) {
ERROR(context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->iostream = iostream;
memset(device->fingerprint, 0, sizeof(device->fingerprint));
// Set the serial communication protocol (115200 8N1).
status = dc_iostream_configure(device->iostream, 115200, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR(context, "Failed to set the terminal attributes.");
goto error_free;
}
// Set the timeout for receiving data (1000ms).
status = dc_iostream_set_timeout(device->iostream, 1000);
if (status != DC_STATUS_SUCCESS) {
ERROR(context, "Failed to set the timeout.");
goto error_free;
}
// Make sure everything is in a sane state.
dc_iostream_sleep (device->iostream, 100);
dc_iostream_purge (device->iostream, DC_DIRECTION_ALL);
*out = (dc_device_t *)device;
return DC_STATUS_SUCCESS;
error_free:
dc_device_deallocate((dc_device_t *)device);
return status;
}
static dc_status_t
mclean_extreme_device_close(dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
mclean_extreme_device_t *device = (mclean_extreme_device_t *)abstract;
status = mclean_extreme_send(device, CMD_CLOSE, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to send the exit command.");
return status;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mclean_extreme_device_set_fingerprint(dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
mclean_extreme_device_t *device = (mclean_extreme_device_t *)abstract;
if (size && size != sizeof(device->fingerprint)) {
return DC_STATUS_INVALIDARGS;
}
if (size) {
memcpy(device->fingerprint, data, sizeof(device->fingerprint));
} else {
memset(device->fingerprint, 0, sizeof(device->fingerprint));
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mclean_extreme_device_timesync(dc_device_t *abstract, const dc_datetime_t *datetime)
{
mclean_extreme_device_t *device = (mclean_extreme_device_t *)abstract;
if (datetime == NULL) {
ERROR(abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Get the UTC timestamp.
dc_ticks_t ticks = dc_datetime_mktime(datetime);
if (ticks == -1 || ticks < EPOCH || ticks - EPOCH > 0xFFFFFFFF) {
ERROR (abstract->context, "Invalid date/time value specified.");
return DC_STATUS_INVALIDARGS;
}
// Adjust the epoch.
unsigned int timestamp = ticks - EPOCH;
// Send the command.
const unsigned char cmd[] = {
(timestamp ) & 0xFF,
(timestamp >> 8) & 0xFF,
(timestamp >> 16) & 0xFF,
(timestamp >> 24) & 0xFF
};
dc_status_t status = mclean_extreme_send(device, CMD_SET_TIME, cmd, sizeof(cmd));
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to send the set time command.");
return status;
}
return status;
}
static dc_status_t
mclean_extreme_device_foreach(dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_status_t status = DC_STATUS_SUCCESS;
mclean_extreme_device_t *device = (mclean_extreme_device_t *)abstract;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Read the firmware version.
unsigned char firmware[4] = {0};
status = mclean_extreme_transfer(device, CMD_FIRMWARE, NULL, 0, firmware, sizeof(firmware), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to read the firmware version.");
return status;
}
// Read the serial number.
size_t serial_len = 0;
unsigned char serial[SZ_PACKET] = {0};
status = mclean_extreme_transfer(device, CMD_SERIALNUMBER, NULL, 0, serial, sizeof(serial), &serial_len);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to read serial number.");
return status;
}
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = 0;
devinfo.firmware = array_uint32_le (firmware);
devinfo.serial = hashcode (serial, serial_len);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Read the computer configuration.
unsigned char computer[SZ_COMPUTER];
status = mclean_extreme_transfer(device, CMD_COMPUTER, NULL, 0, computer, sizeof(computer), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR(abstract->context, "Failed to read the computer configuration.");
return status;
}
// Verify the format version.
unsigned int format = computer[0x0000];
if (format != 0) {
ERROR(abstract->context, "Unsupported device format.");
return DC_STATUS_DATAFORMAT;
}
// Get the number of dives.
unsigned int ndives = array_uint16_le(computer + 0x0019);
// Update and emit a progress event.
progress.current = 1 * NSTEPS;
progress.maximum = (ndives + 1) * NSTEPS;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Allocate a memory buffer for a single dive.
dc_buffer_t *buffer = dc_buffer_new(0);
if (buffer == NULL) {
status = DC_STATUS_NOMEMORY;
goto error_exit;
}
for (unsigned int i = 0; i < ndives; ++i) {
// Download in reverse order (newest first).
unsigned int idx = ndives - 1 - i;
// Read the dive.
status = mclean_extreme_readdive (abstract, &progress, idx, buffer);
if (status != DC_STATUS_SUCCESS) {
goto error_buffer_free;
}
// Cache the pointer.
unsigned char *data = dc_buffer_get_data(buffer);
unsigned int size = dc_buffer_get_size(buffer);
if (memcmp(data + SZ_CFG, device->fingerprint, sizeof(device->fingerprint)) == 0)
break;
if (callback && !callback (data, size, data + SZ_CFG, sizeof(device->fingerprint), userdata)) {
break;
}
}
error_buffer_free:
dc_buffer_free (buffer);
error_exit:
return status;
}