libdivecomputer/src/hw_frog.c
Jef Driesen b35e07b71b Add cancellation support to several backends.
Some backends are technically capable of supporting cancellation, but
still lacked the necessary code to enable it.
2013-09-03 20:13:49 +02:00

562 lines
15 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2012 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <libdivecomputer/hw_frog.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "ringbuffer.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &hw_frog_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define SZ_DISPLAY 15
#define SZ_CUSTOMTEXT 13
#define SZ_VERSION (SZ_CUSTOMTEXT + 4)
#define RB_LOGBOOK_SIZE 256
#define RB_LOGBOOK_COUNT 256
#define RB_PROFILE_BEGIN 0x000000
#define RB_PROFILE_END 0x200000
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define READY 0x4D
#define HEADER 0x61
#define CLOCK 0x62
#define CUSTOMTEXT 0x63
#define DIVE 0x66
#define IDENTITY 0x69
#define DISPLAY 0x6E
#define INIT 0xBB
#define EXIT 0xFF
typedef struct hw_frog_device_t {
dc_device_t base;
serial_t *port;
unsigned char fingerprint[5];
} hw_frog_device_t;
static dc_status_t hw_frog_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t hw_frog_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t hw_frog_device_close (dc_device_t *abstract);
static const dc_device_vtable_t hw_frog_device_vtable = {
DC_FAMILY_HW_FROG,
hw_frog_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
NULL, /* dump */
hw_frog_device_foreach, /* foreach */
hw_frog_device_close /* close */
};
static int
hw_frog_strncpy (unsigned char *data, unsigned int size, const char *text)
{
// Check the maximum length.
size_t length = (text ? strlen (text) : 0);
if (length > size) {
return -1;
}
// Copy the text.
if (length)
memcpy (data, text, length);
// Pad with spaces.
memset (data + length, 0x20, size - length);
return 0;
}
static dc_status_t
hw_frog_transfer (hw_frog_device_t *device,
dc_event_progress_t *progress,
unsigned char cmd,
const unsigned char input[],
unsigned int isize,
unsigned char output[],
unsigned int osize)
{
dc_device_t *abstract = (dc_device_t *) device;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Send the command.
unsigned char command[1] = {cmd};
int n = serial_write (device->port, command, sizeof (command));
if (n != sizeof (command)) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
if (cmd != INIT && cmd != HEADER) {
// Read the echo.
unsigned char answer[1] = {0};
n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
ERROR (abstract->context, "Failed to receive the echo.");
return EXITCODE (n);
}
// Verify the echo.
if (memcmp (answer, command, sizeof (command)) != 0) {
ERROR (abstract->context, "Unexpected echo.");
return DC_STATUS_PROTOCOL;
}
}
if (input) {
// Send the input data packet.
n = serial_write (device->port, input, isize);
if (n != isize) {
ERROR (abstract->context, "Failed to send the data packet.");
return EXITCODE (n);
}
}
if (output) {
unsigned int nbytes = 0;
while (nbytes < osize) {
// Set the minimum packet size.
unsigned int len = 1024;
// Increase the packet size if more data is immediately available.
int available = serial_get_received (device->port);
if (available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > osize)
len = osize - nbytes;
// Read the packet.
n = serial_read (device->port, output + nbytes, len);
if (n != len) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Update and emit a progress event.
if (progress) {
progress->current += len;
device_event_emit ((dc_device_t *) device, DC_EVENT_PROGRESS, progress);
}
nbytes += len;
}
}
if (cmd != EXIT) {
// Read the ready byte.
unsigned char answer[1] = {0};
n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
ERROR (abstract->context, "Failed to receive the ready byte.");
return EXITCODE (n);
}
// Verify the ready byte.
if (answer[0] != READY) {
ERROR (abstract->context, "Unexpected ready byte.");
return DC_STATUS_PROTOCOL;
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
hw_frog_device_t *device = (hw_frog_device_t *) malloc (sizeof (hw_frog_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &hw_frog_device_vtable);
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (115200 8N1).
rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (3000ms).
if (serial_set_timeout (device->port, 3000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Make sure everything is in a sane state.
serial_sleep (device->port, 300);
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Send the init command.
dc_status_t status = hw_frog_transfer (device, NULL, INIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to send the command.");
serial_close (device->port);
free (device);
return status;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_frog_device_close (dc_device_t *abstract)
{
hw_frog_device_t *device = (hw_frog_device_t*) abstract;
// Send the exit command.
dc_status_t status = hw_frog_transfer (device, NULL, EXIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
serial_close (device->port);
free (device);
return status;
}
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_frog_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_version (dc_device_t *abstract, unsigned char data[], unsigned int size)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size != SZ_VERSION)
return DC_STATUS_INVALIDARGS;
// Send the command.
dc_status_t rc = hw_frog_transfer (device, NULL, IDENTITY, NULL, 0, data, size);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_frog_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) +
(RB_PROFILE_END - RB_PROFILE_BEGIN);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Download the version data.
unsigned char id[SZ_VERSION] = {0};
dc_status_t rc = hw_frog_device_version (abstract, id, sizeof (id));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the version.");
return rc;
}
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = 0;
devinfo.firmware = array_uint16_be (id + 2);
devinfo.serial = array_uint16_le (id + 0);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Allocate memory.
unsigned char *header = (unsigned char *) malloc (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT);
if (header == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Download the logbook headers.
rc = hw_frog_transfer (device, &progress, HEADER,
NULL, 0, header, RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the header.");
free (header);
return rc;
}
// Locate the most recent dive.
// The device maintains an internal counter which is incremented for every
// dive, and the current value at the time of the dive is stored in the
// dive header. Thus the most recent dive will have the highest value.
unsigned int count = 0;
unsigned int latest = 0;
unsigned int maximum = 0;
for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) {
unsigned int offset = i * RB_LOGBOOK_SIZE;
// Ignore uninitialized header entries.
if (array_isequal (header + offset, RB_LOGBOOK_SIZE, 0xFF))
break;
// Get the internal dive number.
unsigned int current = array_uint16_le (header + offset + 52);
if (current > maximum) {
maximum = current;
latest = i;
}
count++;
}
// Calculate the total and maximum size.
unsigned int ndives = 0;
unsigned int size = 0;
unsigned int maxsize = 0;
for (unsigned int i = 0; i < count; ++i) {
unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT;
unsigned int offset = idx * RB_LOGBOOK_SIZE;
// Get the ringbuffer pointers.
unsigned int begin = array_uint24_le (header + offset + 2);
unsigned int end = array_uint24_le (header + offset + 5);
if (begin < RB_PROFILE_BEGIN ||
begin >= RB_PROFILE_END ||
end < RB_PROFILE_BEGIN ||
end >= RB_PROFILE_END)
{
ERROR (abstract->context, "Invalid ringbuffer pointer detected.");
free (header);
return DC_STATUS_DATAFORMAT;
}
// Calculate the profile length.
unsigned int length = RB_LOGBOOK_SIZE + RB_PROFILE_DISTANCE (begin, end) - 6;
// Check the fingerprint data.
if (memcmp (header + offset + 9, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
if (length > maxsize)
maxsize = length;
size += length;
ndives++;
}
// Update and emit a progress event.
progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) + size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Finish immediately if there are no dives available.
if (ndives == 0) {
free (header);
return DC_STATUS_SUCCESS;
}
// Allocate enough memory for the largest dive.
unsigned char *profile = (unsigned char *) malloc (maxsize);
if (profile == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
free (header);
return DC_STATUS_NOMEMORY;
}
// Download the dives.
for (unsigned int i = 0; i < ndives; ++i) {
unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT;
unsigned int offset = idx * RB_LOGBOOK_SIZE;
// Get the ringbuffer pointers.
unsigned int begin = array_uint24_le (header + offset + 2);
unsigned int end = array_uint24_le (header + offset + 5);
// Calculate the profile length.
unsigned int length = RB_LOGBOOK_SIZE + RB_PROFILE_DISTANCE (begin, end) - 6;
// Download the dive.
unsigned char number[1] = {idx};
rc = hw_frog_transfer (device, &progress, DIVE,
number, sizeof (number), profile, length);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the dive.");
free (profile);
free (header);
return rc;
}
// Verify the header in the logbook and profile are identical.
if (memcmp (profile, header + offset, RB_LOGBOOK_SIZE) != 0) {
ERROR (abstract->context, "Unexpected profile header.");
free (profile);
free (header);
return rc;
}
if (callback && !callback (profile, length, profile + 9, sizeof (device->fingerprint), userdata))
break;
}
free (profile);
free (header);
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_clock (dc_device_t *abstract, const dc_datetime_t *datetime)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (datetime == NULL) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
unsigned char packet[6] = {
datetime->hour, datetime->minute, datetime->second,
datetime->month, datetime->day, datetime->year - 2000};
dc_status_t rc = hw_frog_transfer (device, NULL, CLOCK, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_display (dc_device_t *abstract, const char *text)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Pad the data packet with spaces.
unsigned char packet[SZ_DISPLAY] = {0};
if (hw_frog_strncpy (packet, sizeof (packet), text) != 0) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
dc_status_t rc = hw_frog_transfer (device, NULL, DISPLAY, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_frog_device_customtext (dc_device_t *abstract, const char *text)
{
hw_frog_device_t *device = (hw_frog_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Pad the data packet with spaces.
unsigned char packet[SZ_CUSTOMTEXT] = {0};
if (hw_frog_strncpy (packet, sizeof (packet), text) != 0) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
dc_status_t rc = hw_frog_transfer (device, NULL, CUSTOMTEXT, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}