libdivecomputer/src/cressi_leonardo.c
Jef Driesen 2064c3d410 Fix the parsing of the serial number.
The serial number appears to be either a 24 or a 16 bit number, but
certainly not a 32bit number. Whether it's 24 or 16 bit is hard to
tell because the data we have available always contains a zero value
in the third byte.
2014-02-19 14:24:52 +01:00

385 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2013 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy, memcmp
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include <libdivecomputer/cressi_leonardo.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "array.h"
#include "ringbuffer.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &cressi_leonardo_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define SZ_MEMORY 32000
#define RB_LOGBOOK_BEGIN 0x0100
#define RB_LOGBOOK_END 0x1438
#define RB_LOGBOOK_SIZE 0x52
#define RB_LOGBOOK_COUNT ((RB_LOGBOOK_END - RB_LOGBOOK_BEGIN) / RB_LOGBOOK_SIZE)
#define RB_PROFILE_BEGIN 0x1338
#define RB_PROFILE_END SZ_MEMORY
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END)
typedef struct cressi_leonardo_device_t {
dc_device_t base;
serial_t *port;
unsigned char fingerprint[5];
} cressi_leonardo_device_t;
static dc_status_t cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t cressi_leonardo_device_close (dc_device_t *abstract);
static const dc_device_vtable_t cressi_leonardo_device_vtable = {
DC_FAMILY_CRESSI_LEONARDO,
cressi_leonardo_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
cressi_leonardo_device_dump, /* dump */
cressi_leonardo_device_foreach, /* foreach */
cressi_leonardo_device_close /* close */
};
dc_status_t
cressi_leonardo_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) malloc (sizeof (cressi_leonardo_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &cressi_leonardo_device_vtable);
// Set the default values.
device->port = NULL;
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (115200 8N1).
rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (1000 ms).
if (serial_set_timeout (device->port, 1000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Clear the DTR and set the RTS line.
if (serial_set_dtr (device->port, 0) == -1 ||
serial_set_rts (device->port, 1) == -1) {
ERROR (context, "Failed to set the DTR/RTS line.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
serial_sleep (device->port, 100);
serial_flush (device->port, SERIAL_QUEUE_BOTH);
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_close (dc_device_t *abstract)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
// Erase the current contents of the buffer and
// pre-allocate the required amount of memory.
if (!dc_buffer_clear (buffer) || !dc_buffer_resize (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_MEMORY;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Send the command header to the dive computer.
const unsigned char command[] = {0x7B, 0x31, 0x32, 0x33, 0x44, 0x42, 0x41, 0x7d};
int n = serial_write (device->port, command, sizeof (command));
if (n != sizeof (command)) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
// Receive the header packet.
unsigned char header[7] = {0};
n = serial_read (device->port, header, sizeof (header));
if (n != sizeof (header)) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the header packet.
const unsigned char expected[] = {0x7B, 0x21, 0x44, 0x35, 0x42, 0x33, 0x7d};
if (memcmp (header, expected, sizeof (expected)) != 0) {
ERROR (abstract->context, "Unexpected answer byte.");
return DC_STATUS_PROTOCOL;
}
unsigned char *data = dc_buffer_get_data (buffer);
unsigned int nbytes = 0;
while (nbytes < SZ_MEMORY) {
// Set the minimum packet size.
unsigned int len = 1024;
// Increase the packet size if more data is immediately available.
int available = serial_get_received (device->port);
if (available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > SZ_MEMORY)
len = SZ_MEMORY - nbytes;
// Read the packet.
n = serial_read (device->port, data + nbytes, len);
if (n != len) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Update and emit a progress event.
progress.current += len;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
nbytes += len;
}
// Receive the trailer packet.
unsigned char trailer[4] = {0};
n = serial_read (device->port, trailer, sizeof (trailer));
if (n != sizeof (trailer)) {
ERROR (abstract->context, "Failed to receive the answer.");
return EXITCODE (n);
}
// Convert to a binary checksum.
unsigned char checksum[2] = {0};
array_convert_hex2bin (trailer, sizeof (trailer), checksum, sizeof (checksum));
// Verify the checksum.
unsigned int csum1 = array_uint16_be (checksum);
unsigned int csum2 = checksum_crc_ccitt_uint16 (data, SZ_MEMORY);
if (csum1 != csum2) {
ERROR (abstract->context, "Unexpected answer bytes.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cressi_leonardo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = cressi_leonardo_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = data[0];
devinfo.firmware = 0;
devinfo.serial = array_uint24_le (data + 1);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = cressi_leonardo_extract_dives (abstract, dc_buffer_get_data (buffer),
dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
dc_status_t
cressi_leonardo_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
cressi_leonardo_device_t *device = (cressi_leonardo_device_t *) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
// Locate the most recent dive.
// The device maintains an internal counter which is incremented for every
// dive, and the current value at the time of the dive is stored in the
// dive header. Thus the most recent dive will have the highest value.
unsigned int count = 0;
unsigned int latest = 0;
unsigned int maximum = 0;
for (unsigned int i = 0; i < RB_LOGBOOK_COUNT; ++i) {
unsigned int offset = RB_LOGBOOK_BEGIN + i * RB_LOGBOOK_SIZE;
// Ignore uninitialized header entries.
if (array_isequal (data + offset, RB_LOGBOOK_SIZE, 0xFF))
break;
// Get the internal dive number.
unsigned int current = array_uint16_le (data + offset);
if (current > maximum) {
maximum = current;
latest = i;
}
count++;
}
unsigned char *buffer = (unsigned char *) malloc (RB_LOGBOOK_SIZE + RB_PROFILE_END - RB_PROFILE_BEGIN);
if (buffer == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
for (unsigned int i = 0; i < count; ++i) {
unsigned int idx = (latest + RB_LOGBOOK_COUNT - i) % RB_LOGBOOK_COUNT;
unsigned int offset = RB_LOGBOOK_BEGIN + idx * RB_LOGBOOK_SIZE;
// Get the ringbuffer pointers.
unsigned int header = array_uint16_le (data + offset + 2);
unsigned int footer = array_uint16_le (data + offset + 4);
if (header < RB_PROFILE_BEGIN || header + 2 > RB_PROFILE_END ||
footer < RB_PROFILE_BEGIN || footer + 2 > RB_PROFILE_END)
{
ERROR (context, "Invalid ringbuffer pointer detected.");
free (buffer);
return DC_STATUS_DATAFORMAT;
}
// Get the same pointers from the profile.
unsigned int header2 = array_uint16_le (data + footer);
unsigned int footer2 = array_uint16_le (data + header);
if (header2 != header || footer2 != footer) {
ERROR (context, "Invalid ringbuffer pointer detected.");
free (buffer);
return DC_STATUS_DATAFORMAT;
}
// Calculate the profile address and length.
unsigned int address = header + 2;
unsigned int length = RB_PROFILE_DISTANCE (header, footer) - 2;
// Check the fingerprint data.
if (device && memcmp (data + offset + 8, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
// Copy the logbook entry.
memcpy (buffer, data + offset, RB_LOGBOOK_SIZE);
// Copy the profile data.
if (address + length > RB_PROFILE_END) {
unsigned int len_a = RB_PROFILE_END - address;
unsigned int len_b = length - len_a;
memcpy (buffer + RB_LOGBOOK_SIZE, data + address, len_a);
memcpy (buffer + RB_LOGBOOK_SIZE + len_a, data + RB_PROFILE_BEGIN, len_b);
} else {
memcpy (buffer + RB_LOGBOOK_SIZE, data + address, length);
}
if (callback && !callback (buffer, RB_LOGBOOK_SIZE + length, buffer + 8, sizeof (device->fingerprint), userdata)) {
break;
}
}
free (buffer);
return DC_STATUS_SUCCESS;
}