libdivecomputer/src/oceanic_atom2.c
2009-04-10 09:20:48 +00:00

617 lines
19 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include "device-private.h"
#include "oceanic_atom2.h"
#include "serial.h"
#include "utils.h"
#include "ringbuffer.h"
#include "checksum.h"
#include "array.h"
#define MAXRETRIES 2
#define WARNING(expr) \
{ \
message ("%s:%d: %s\n", __FILE__, __LINE__, expr); \
}
#define EXITCODE(rc) \
( \
rc == -1 ? DEVICE_STATUS_IO : DEVICE_STATUS_TIMEOUT \
)
#define FP_OFFSET 0
#define FP_SIZE 8
#define ACK 0x5A
#define NAK 0xA5
#define CF_POINTERS 0x0040
#define RB_LOGBOOK_EMPTY 0x0230
#define RB_LOGBOOK_BEGIN 0x0240
#define RB_LOGBOOK_END 0x0A40
#define RB_LOGBOOK_DISTANCE(a,b) ringbuffer_distance (a, b, RB_LOGBOOK_BEGIN, RB_LOGBOOK_END)
#define RB_PROFILE_EMPTY 0x0A40
#define RB_PROFILE_BEGIN 0x0A50
#define RB_PROFILE_END 0xFFF0
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define PT_PROFILE_FIRST(x) ( (x)[5] + (((x)[6] & 0x0F) << 8) )
#define PT_PROFILE_LAST(x) ( ((x)[6] >> 4) + ((x)[7] << 4) )
typedef struct oceanic_atom2_device_t {
device_t base;
struct serial *port;
unsigned char fingerprint[FP_SIZE];
} oceanic_atom2_device_t;
static device_status_t oceanic_atom2_device_set_fingerprint (device_t *abstract, const unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_version (device_t *abstract, unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_read (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_write (device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size);
static device_status_t oceanic_atom2_device_dump (device_t *abstract, unsigned char data[], unsigned int size, unsigned int *result);
static device_status_t oceanic_atom2_device_foreach (device_t *abstract, dive_callback_t callback, void *userdata);
static device_status_t oceanic_atom2_device_close (device_t *abstract);
static const device_backend_t oceanic_atom2_device_backend = {
DEVICE_TYPE_OCEANIC_ATOM2,
oceanic_atom2_device_set_fingerprint, /* set_fingerprint */
NULL, /* handshake */
oceanic_atom2_device_version, /* version */
oceanic_atom2_device_read, /* read */
oceanic_atom2_device_write, /* write */
oceanic_atom2_device_dump, /* dump */
oceanic_atom2_device_foreach, /* foreach */
oceanic_atom2_device_close /* close */
};
static int
device_is_oceanic_atom2 (device_t *abstract)
{
if (abstract == NULL)
return 0;
return abstract->backend == &oceanic_atom2_device_backend;
}
static device_status_t
oceanic_atom2_send (oceanic_atom2_device_t *device, const unsigned char command[], unsigned int csize)
{
// Send the command to the dive computer and
// wait until all data has been transmitted.
serial_write (device->port, command, csize);
serial_drain (device->port);
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_transfer (oceanic_atom2_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize)
{
// Send the command to the device. If the device responds with an
// ACK byte, the command was received successfully and the answer
// (if any) follows after the ACK byte. If the device responds with
// a NAK byte, we try to resend the command a number of times before
// returning an error.
unsigned int nretries = 0;
unsigned char response = NAK;
while (response == NAK) {
// Send the command to the dive computer.
device_status_t rc = oceanic_atom2_send (device, command, csize);
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Failed to send the command.");
return rc;
}
// Receive the response (ACK/NAK) of the dive computer.
int n = serial_read (device->port, &response, 1);
if (n != 1) {
WARNING ("Failed to receive the answer.");
return EXITCODE (n);
}
#ifndef NDEBUG
if (response != ACK)
message ("Received unexpected response (%02x).\n", response);
#endif
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
break;
}
// Verify the response of the dive computer.
if (response != ACK) {
WARNING ("Unexpected answer start byte(s).");
return DEVICE_STATUS_PROTOCOL;
}
if (asize) {
// Receive the answer of the dive computer.
int rc = serial_read (device->port, answer, asize);
if (rc != asize) {
WARNING ("Failed to receive the answer.");
return EXITCODE (rc);
}
// Verify the checksum of the answer.
unsigned char crc = answer[asize - 1];
unsigned char ccrc = checksum_add_uint8 (answer, asize - 1, 0x00);
if (crc != ccrc) {
WARNING ("Unexpected answer CRC.");
return DEVICE_STATUS_PROTOCOL;
}
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_init (oceanic_atom2_device_t *device)
{
// Send the command to the dive computer.
unsigned char command[3] = {0xA8, 0x99, 0x00};
device_status_t rc = oceanic_atom2_send (device, command, sizeof (command));
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Failed to send the command.");
return rc;
}
// Receive the answer of the dive computer.
unsigned char answer[3] = {0};
int n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
WARNING ("Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the answer.
if (answer[0] != NAK || answer[1] != NAK || answer[2] != NAK) {
WARNING ("Unexpected answer byte(s).");
return DEVICE_STATUS_PROTOCOL;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_quit (oceanic_atom2_device_t *device)
{
// Send the command to the dive computer.
unsigned char command[4] = {0x6A, 0x05, 0xA5, 0x00};
device_status_t rc = oceanic_atom2_send (device, command, sizeof (command));
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Failed to send the command.");
return rc;
}
// Receive the answer of the dive computer.
unsigned char answer[1] = {0};
int n = serial_read (device->port, answer, sizeof (answer));
if (n != sizeof (answer)) {
WARNING ("Failed to receive the answer.");
return EXITCODE (n);
}
// Verify the answer.
if (answer[0] != 0xA5) {
WARNING ("Unexpected answer byte(s).");
return DEVICE_STATUS_PROTOCOL;
}
return DEVICE_STATUS_SUCCESS;
}
device_status_t
oceanic_atom2_device_open (device_t **out, const char* name)
{
if (out == NULL)
return DEVICE_STATUS_ERROR;
// Allocate memory.
oceanic_atom2_device_t *device = (oceanic_atom2_device_t *) malloc (sizeof (oceanic_atom2_device_t));
if (device == NULL) {
WARNING ("Failed to allocate memory.");
return DEVICE_STATUS_MEMORY;
}
// Initialize the base class.
device_init (&device->base, &oceanic_atom2_device_backend);
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, FP_SIZE);
// Open the device.
int rc = serial_open (&device->port, name);
if (rc == -1) {
WARNING ("Failed to open the serial port.");
free (device);
return DEVICE_STATUS_IO;
}
// Set the serial communication protocol (38400 8N1).
rc = serial_configure (device->port, 38400, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
WARNING ("Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DEVICE_STATUS_IO;
}
// Set the timeout for receiving data (3000 ms).
if (serial_set_timeout (device->port, 3000) == -1) {
WARNING ("Failed to set the timeout.");
serial_close (device->port);
free (device);
return DEVICE_STATUS_IO;
}
// Give the interface 100 ms to settle and draw power up.
serial_sleep (100);
// Make sure everything is in a sane state.
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Send the init command.
oceanic_atom2_init (device);
*out = (device_t*) device;
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_set_fingerprint (device_t *abstract, const unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
if (size && size != FP_SIZE)
return DEVICE_STATUS_ERROR;
if (size)
memcpy (device->fingerprint, data, FP_SIZE);
else
memset (device->fingerprint, 0, FP_SIZE);
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_close (device_t *abstract)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
// Send the quit command.
oceanic_atom2_quit (device);
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DEVICE_STATUS_IO;
}
// Free memory.
free (device);
return DEVICE_STATUS_SUCCESS;
}
device_status_t
oceanic_atom2_device_keepalive (device_t *abstract)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
// Send the command to the dive computer.
unsigned char command[4] = {0x91, 0x05, 0xA5, 0x00};
device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), NULL, 0);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_version (device_t *abstract, unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
if (size < OCEANIC_ATOM2_PACKET_SIZE)
return DEVICE_STATUS_MEMORY;
unsigned char answer[OCEANIC_ATOM2_PACKET_SIZE + 1] = {0};
unsigned char command[2] = {0x84, 0x00};
device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
memcpy (data, answer, OCEANIC_ATOM2_PACKET_SIZE);
#ifndef NDEBUG
answer[OCEANIC_ATOM2_PACKET_SIZE] = 0;
message ("ATOM2ReadVersion()=\"%s\"\n", answer);
#endif
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_read (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
assert (address % OCEANIC_ATOM2_PACKET_SIZE == 0);
assert (size % OCEANIC_ATOM2_PACKET_SIZE == 0);
// The data transmission is split in packages
// of maximum $OCEANIC_ATOM2_PACKET_SIZE bytes.
unsigned int nbytes = 0;
while (nbytes < size) {
// Read the package.
unsigned int number = address / OCEANIC_ATOM2_PACKET_SIZE;
unsigned char answer[OCEANIC_ATOM2_PACKET_SIZE + 1] = {0};
unsigned char command[4] = {0xB1,
(number >> 8) & 0xFF, // high
(number ) & 0xFF, // low
0};
device_status_t rc = oceanic_atom2_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
memcpy (data, answer, OCEANIC_ATOM2_PACKET_SIZE);
#ifndef NDEBUG
message ("ATOM2Read(0x%04x,%d)=\"", address, OCEANIC_ATOM2_PACKET_SIZE);
for (unsigned int i = 0; i < OCEANIC_ATOM2_PACKET_SIZE; ++i) {
message("%02x", data[i]);
}
message("\"\n");
#endif
nbytes += OCEANIC_ATOM2_PACKET_SIZE;
address += OCEANIC_ATOM2_PACKET_SIZE;
data += OCEANIC_ATOM2_PACKET_SIZE;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_write (device_t *abstract, unsigned int address, const unsigned char data[], unsigned int size)
{
oceanic_atom2_device_t *device = (oceanic_atom2_device_t*) abstract;
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
assert (address % OCEANIC_ATOM2_PACKET_SIZE == 0);
assert (size % OCEANIC_ATOM2_PACKET_SIZE == 0);
// The data transmission is split in packages
// of maximum $OCEANIC_ATOM2_PACKET_SIZE bytes.
unsigned int nbytes = 0;
while (nbytes < size) {
// Prepare to write the package.
unsigned int number = address / OCEANIC_ATOM2_PACKET_SIZE;
unsigned char prepare[4] = {0xB2,
(number >> 8) & 0xFF, // high
(number ) & 0xFF, // low
0x00};
device_status_t rc = oceanic_atom2_transfer (device, prepare, sizeof (prepare), NULL, 0);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
#ifndef NDEBUG
message ("ATOM2PrepareWrite(0x%04x,%d)\n", address, OCEANIC_ATOM2_PACKET_SIZE);
#endif
// Write the package.
unsigned char command[OCEANIC_ATOM2_PACKET_SIZE + 2] = {0};
memcpy (command, data, OCEANIC_ATOM2_PACKET_SIZE);
command[OCEANIC_ATOM2_PACKET_SIZE] = checksum_add_uint8 (command, OCEANIC_ATOM2_PACKET_SIZE, 0x00);
rc = oceanic_atom2_transfer (device, command, sizeof (command), NULL, 0);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
#ifndef NDEBUG
message ("ATOM2Write(0x%04x,%d)=\"", address, OCEANIC_ATOM2_PACKET_SIZE);
for (unsigned int i = 0; i < OCEANIC_ATOM2_PACKET_SIZE; ++i) {
message("%02x", data[i]);
}
message("\"\n");
#endif
nbytes += OCEANIC_ATOM2_PACKET_SIZE;
address += OCEANIC_ATOM2_PACKET_SIZE;
data += OCEANIC_ATOM2_PACKET_SIZE;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_read_ringbuffer (device_t *abstract, unsigned int address, unsigned char data[], unsigned int size, unsigned int begin, unsigned int end)
{
assert (address >= begin && address < end);
assert (size <= end - begin);
if (address + size > end) {
unsigned int a = end - address;
unsigned int b = size - a;
device_status_t rc = oceanic_atom2_device_read (abstract, address, data, a);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
rc = oceanic_atom2_device_read (abstract, begin, data + a, b);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
} else {
device_status_t rc = oceanic_atom2_device_read (abstract, address, data, size);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
}
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_dump (device_t *abstract, unsigned char data[], unsigned int size, unsigned int *result)
{
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
if (size < OCEANIC_ATOM2_MEMORY_SIZE) {
WARNING ("Insufficient buffer space available.");
return DEVICE_STATUS_MEMORY;
}
device_status_t rc = oceanic_atom2_device_read (abstract, 0x00, data, OCEANIC_ATOM2_MEMORY_SIZE);
if (rc != DEVICE_STATUS_SUCCESS)
return rc;
if (result)
*result = OCEANIC_ATOM2_MEMORY_SIZE;
return DEVICE_STATUS_SUCCESS;
}
static device_status_t
oceanic_atom2_device_foreach (device_t *abstract, dive_callback_t callback, void *userdata)
{
if (! device_is_oceanic_atom2 (abstract))
return DEVICE_STATUS_TYPE_MISMATCH;
// Read the pointer data.
unsigned char pointers[OCEANIC_ATOM2_PACKET_SIZE] = {0};
device_status_t rc = oceanic_atom2_device_read (abstract, CF_POINTERS, pointers, OCEANIC_ATOM2_PACKET_SIZE);
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Cannot read pointers.");
return rc;
}
// Get the logbook pointers.
unsigned int logbook_first = array_uint16_le (pointers + 4);
unsigned int logbook_last = array_uint16_le (pointers + 6);
message ("logbook: first=%04x, last=%04x\n", logbook_first, logbook_last);
// Calculate the total number of logbook entries.
// In a typical ringbuffer implementation (with only two pointers),
// there is no distinction between an empty and a full ringbuffer.
// However, the ATOM2 sets the pointers to a fixed (invalid) value
// to indicate an empty buffer. With this knowledge, we can detect
// the difference between both cases correctly.
if (logbook_first == RB_LOGBOOK_EMPTY && logbook_last == RB_LOGBOOK_EMPTY)
return DEVICE_STATUS_SUCCESS;
unsigned int logbook_count = RB_LOGBOOK_DISTANCE (logbook_first, logbook_last) /
(OCEANIC_ATOM2_PACKET_SIZE / 2) + 1;
message ("logbook: count=%u\n", logbook_count);
// Align the pointers to the packet size.
unsigned int logbook_page_offset = logbook_first % OCEANIC_ATOM2_PACKET_SIZE;
unsigned int logbook_page_first = (logbook_first / OCEANIC_ATOM2_PACKET_SIZE) * OCEANIC_ATOM2_PACKET_SIZE;
unsigned int logbook_page_last = (logbook_last / OCEANIC_ATOM2_PACKET_SIZE) * OCEANIC_ATOM2_PACKET_SIZE;
unsigned int logbook_page_len = RB_LOGBOOK_DISTANCE (logbook_page_first, logbook_page_last) + OCEANIC_ATOM2_PACKET_SIZE;
message ("logbook: first=%04x, last=%04x, len=%u, offset=%u\n",
logbook_page_first, logbook_page_last, logbook_page_len, logbook_page_offset);
// Read the logbook data.
unsigned char logbooks[RB_LOGBOOK_END - RB_LOGBOOK_BEGIN] = {0};
rc = oceanic_atom2_read_ringbuffer (abstract, logbook_page_first, logbooks, logbook_page_len, RB_LOGBOOK_BEGIN, RB_LOGBOOK_END);
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Cannot read dive logbooks.");
return rc;
}
// Traverse the logbook ringbuffer backwards to retrieve the most recent
// dives first. The logbook ringbuffer is linearized at this point, so
// we do not have to take into account any memory wrapping near the end
// of the memory buffer.
unsigned char *current = logbooks + logbook_page_offset + (logbook_count - 1) * (OCEANIC_ATOM2_PACKET_SIZE / 2);
for (unsigned int i = 0; i < logbook_count; ++i) {
message ("logbook: index=%u\n", i);
// Get the profile pointers.
unsigned int profile_first = PT_PROFILE_FIRST (current) * OCEANIC_ATOM2_PACKET_SIZE;
unsigned int profile_last = PT_PROFILE_LAST (current) * OCEANIC_ATOM2_PACKET_SIZE;
unsigned int profile_len = RB_PROFILE_DISTANCE (profile_first, profile_last) + OCEANIC_ATOM2_PACKET_SIZE;
message ("profile: first=%04x, last=%04x, len=%u\n", profile_first, profile_last, profile_len);
// Read the profile data.
unsigned char profile[RB_PROFILE_END - RB_PROFILE_BEGIN + 8] = {0};
rc = oceanic_atom2_read_ringbuffer (abstract, profile_first, profile + 8, profile_len, RB_PROFILE_BEGIN, RB_PROFILE_END);
if (rc != DEVICE_STATUS_SUCCESS) {
WARNING ("Cannot read dive profiles.");
return rc;
}
// Copy the logbook data to the profile.
memcpy (profile, current, 8);
if (callback && !callback (profile, profile_len + 8, userdata))
return DEVICE_STATUS_SUCCESS;
// Advance to the next logbook entry.
current -= (OCEANIC_ATOM2_PACKET_SIZE / 2);
}
return DEVICE_STATUS_SUCCESS;
}