libdivecomputer/src/oceanic_vtpro_parser.c
Jef Driesen 3f9133def9 Always use the sample timestamp as the base value
With a time based sample interval, the number of samples for a single
timestamp should be constant. However in practice some devices
occasionally store fewer samples. Since our sample time is based purely
on the sample interval, it goes completely out of sync with the sample
timestamp. To avoid this problem, the sample timestamp is used as the
base value.

For the Oceanic Pro Plus 2, this problem is very noticable. After about
115 minutes into a dive, the sample interval appears to increase to 60
seconds. Thus, without this fix, the resulting dive time for long dives
is suddenly much shorter than it should be.
2017-02-08 07:43:44 +01:00

373 lines
10 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2009 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <libdivecomputer/oceanic_vtpro.h>
#include <libdivecomputer/units.h>
#include "oceanic_common.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) dc_parser_isinstance((parser), &oceanic_vtpro_parser_vtable)
#define AERIS500AI 0x4151
typedef struct oceanic_vtpro_parser_t oceanic_vtpro_parser_t;
struct oceanic_vtpro_parser_t {
dc_parser_t base;
unsigned int model;
// Cached fields.
unsigned int cached;
unsigned int divetime;
double maxdepth;
};
static dc_status_t oceanic_vtpro_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t oceanic_vtpro_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t oceanic_vtpro_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t oceanic_vtpro_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t oceanic_vtpro_parser_vtable = {
sizeof(oceanic_vtpro_parser_t),
DC_FAMILY_OCEANIC_VTPRO,
oceanic_vtpro_parser_set_data, /* set_data */
oceanic_vtpro_parser_get_datetime, /* datetime */
oceanic_vtpro_parser_get_field, /* fields */
oceanic_vtpro_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
dc_status_t
oceanic_vtpro_parser_create (dc_parser_t **out, dc_context_t *context)
{
return oceanic_vtpro_parser_create2 (out, context, 0);
}
dc_status_t
oceanic_vtpro_parser_create2 (dc_parser_t **out, dc_context_t *context, unsigned int model)
{
oceanic_vtpro_parser_t *parser = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
parser = (oceanic_vtpro_parser_t *) dc_parser_allocate (context, &oceanic_vtpro_parser_vtable);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
parser->model = model;
parser->cached = 0;
parser->divetime = 0;
parser->maxdepth = 0.0;
*out = (dc_parser_t*) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
oceanic_vtpro_parser_t *parser = (oceanic_vtpro_parser_t *) abstract;
// Reset the cache.
parser->cached = 0;
parser->divetime = 0;
parser->maxdepth = 0.0;
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
oceanic_vtpro_parser_t *parser = (oceanic_vtpro_parser_t *) abstract;
if (abstract->size < 8)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
if (datetime) {
// AM/PM bit of the 12-hour clock.
unsigned int pm = 0;
if (parser->model == AERIS500AI) {
datetime->year = (p[2] & 0x0F) + 1999;
datetime->month = (p[3] & 0xF0) >> 4;
datetime->day = ((p[2] & 0xF0) >> 4) | ((p[3] & 0x02) << 3);
datetime->hour = bcd2dec (p[1] & 0x0F) + 10 * (p[3] & 0x01);
pm = p[3] & 0x08;
} else {
// The logbook entry can only store the last digit of the year field,
// but the full year is also available in the dive header.
if (abstract->size < 40)
datetime->year = bcd2dec (p[4] & 0x0F) + 2000;
else
datetime->year = bcd2dec (((p[32 + 3] & 0xC0) >> 2) + ((p[32 + 2] & 0xF0) >> 4)) + 2000;
datetime->month = (p[4] & 0xF0) >> 4;
datetime->day = bcd2dec (p[3]);
datetime->hour = bcd2dec (p[1] & 0x7F);
pm = p[1] & 0x80;
}
datetime->minute = bcd2dec (p[0]);
datetime->second = 0;
// Convert to a 24-hour clock.
datetime->hour %= 12;
if (pm)
datetime->hour += 12;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
oceanic_vtpro_parser_t *parser = (oceanic_vtpro_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
if (size < 7 * PAGESIZE / 2)
return DC_STATUS_DATAFORMAT;
if (!parser->cached) {
sample_statistics_t statistics = SAMPLE_STATISTICS_INITIALIZER;
dc_status_t rc = oceanic_vtpro_parser_samples_foreach (
abstract, sample_statistics_cb, &statistics);
if (rc != DC_STATUS_SUCCESS)
return rc;
parser->cached = 1;
parser->divetime = statistics.divetime;
parser->maxdepth = statistics.maxdepth;
}
unsigned int footer = size - PAGESIZE;
unsigned int oxygen = 0;
unsigned int maxdepth = 0;
unsigned int beginpressure = array_uint16_le(data + 0x26) & 0x0FFF;
unsigned int endpressure = array_uint16_le(data + footer + 0x05) & 0x0FFF;
if (parser->model == AERIS500AI) {
oxygen = (array_uint16_le(data + footer + 2) & 0x0FF0) >> 4;
maxdepth = data[footer + 1];
} else {
oxygen = data[footer + 3];
maxdepth = array_uint16_le(data + footer + 0) & 0x0FFF;
}
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_tank_t *tank = (dc_tank_t *) value;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
*((unsigned int *) value) = parser->divetime;
break;
case DC_FIELD_MAXDEPTH:
*((double *) value) = maxdepth * FEET;
break;
case DC_FIELD_GASMIX_COUNT:
*((unsigned int *) value) = 1;
break;
case DC_FIELD_GASMIX:
gasmix->helium = 0.0;
if (oxygen)
gasmix->oxygen = oxygen / 100.0;
else
gasmix->oxygen = 0.21;
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_TANK_COUNT:
if (beginpressure == 0 && endpressure == 0)
*((unsigned int *) value) = 0;
else
*((unsigned int *) value) = 1;
break;
case DC_FIELD_TANK:
tank->type = DC_TANKVOLUME_NONE;
tank->volume = 0.0;
tank->workpressure = 0.0;
tank->gasmix = flags;
tank->beginpressure = beginpressure * 2 * PSI / BAR;
tank->endpressure = endpressure * 2 * PSI / BAR;
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_vtpro_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
oceanic_vtpro_parser_t *parser = (oceanic_vtpro_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
if (size < 7 * PAGESIZE / 2)
return DC_STATUS_DATAFORMAT;
unsigned int time = 0;
unsigned int interval = 0;
if (parser->model == AERIS500AI) {
const unsigned int intervals[] = {2, 5, 10, 15, 20, 25, 30};
unsigned int samplerate = (data[0x27] >> 4);
if (samplerate >= 3 && samplerate <= 9) {
interval = intervals[samplerate - 3];
}
} else {
const unsigned int intervals[] = {2, 15, 30, 60};
unsigned int samplerate = (data[0x27] >> 4) & 0x07;
if (samplerate <= 3) {
interval = intervals[samplerate];
}
}
// Initialize the state for the timestamp processing.
unsigned int timestamp = 0, count = 0, i = 0;
unsigned int offset = 5 * PAGESIZE / 2;
while (offset + PAGESIZE / 2 <= size - PAGESIZE) {
dc_sample_value_t sample = {0};
// Ignore empty samples.
if (array_isequal (data + offset, PAGESIZE / 2, 0x00) ||
array_isequal (data + offset, PAGESIZE / 2, 0xFF)) {
offset += PAGESIZE / 2;
continue;
}
// Get the current timestamp.
unsigned int current = bcd2dec (data[offset + 1] & 0x0F) * 60 + bcd2dec (data[offset + 0]);
if (current < timestamp) {
ERROR (abstract->context, "Timestamp moved backwards.");
return DC_STATUS_DATAFORMAT;
}
if (current != timestamp || count == 0) {
// A sample with a new timestamp.
i = 0;
if (interval) {
// With a time based sample interval, the maximum number
// of samples for a single timestamp is always fixed.
count = 60 / interval;
} else {
// With a depth based sample interval, the exact number
// of samples for a single timestamp needs to be counted.
count = 1;
unsigned int idx = offset + PAGESIZE / 2 ;
while (idx + PAGESIZE / 2 <= size - PAGESIZE) {
// Ignore empty samples.
if (array_isequal (data + idx, PAGESIZE / 2, 0x00) ||
array_isequal (data + idx, PAGESIZE / 2, 0xFF)) {
idx += PAGESIZE / 2;
continue;
}
unsigned int next = bcd2dec (data[idx + 1] & 0x0F) * 60 + bcd2dec (data[idx + 0]);
if (next != current)
break;
idx += PAGESIZE / 2;
count++;
}
}
} else {
// A sample with the same timestamp.
i++;
}
if (interval) {
if (current > timestamp + 1) {
ERROR (abstract->context, "Unexpected timestamp jump.");
return DC_STATUS_DATAFORMAT;
}
if (i >= count) {
WARNING (abstract->context, "Unexpected sample with the same timestamp ignored.");
offset += PAGESIZE / 2;
continue;
}
}
// Store the current timestamp.
timestamp = current;
// Time.
if (interval)
time = timestamp * 60 + (i + 1) * interval;
else
time = timestamp * 60 + (i + 1) * 60.0 / count + 0.5;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Vendor specific data
sample.vendor.type = SAMPLE_VENDOR_OCEANIC_VTPRO;
sample.vendor.size = PAGESIZE / 2;
sample.vendor.data = data + offset;
if (callback) callback (DC_SAMPLE_VENDOR, sample, userdata);
// Depth (ft)
unsigned int depth = 0;
if (parser->model == AERIS500AI) {
depth = (array_uint16_le(data + offset + 2) & 0x0FF0) >> 4;
} else {
depth = data[offset + 3];
}
sample.depth = depth * FEET;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Temperature (°F)
unsigned int temperature = 0;
if (parser->model == AERIS500AI) {
temperature = (array_uint16_le(data + offset + 6) & 0x0FF0) >> 4;
} else {
temperature = data[offset + 6];
}
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
offset += PAGESIZE / 2;
}
return DC_STATUS_SUCCESS;
}