libdivecomputer/src/shearwater_predator.c
Jef Driesen 59b17858f4 Append the final block to each dive.
There are two good reasons for this change. First of all, it makes the
Predator data format more consistent with the Petrel data format, which
also has the final block appended to each dive. But even more important
is that we might actually need the information stored in the final block
someday.

The final block contains important information about the device, such as
the firmware and logbook version. Right now this information is simply
lost after the download. But if the data format ever changes to support
some new feature, we'll likely need that information to autodetect the
correct format.

Unfortunately this also changes the dive format in a non-backwards
compatible way. However, to minimize the inconvenience, the legacy
format (without the extra final block) remains supported in the parser.
2013-04-23 21:07:34 +02:00

364 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2012 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <libdivecomputer/shearwater_predator.h>
#include "shearwater_common.h"
#include "context-private.h"
#include "device-private.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &shearwater_predator_device_vtable)
#define PREDATOR 2
#define PETREL 3
#define SZ_BLOCK 0x80
#define SZ_MEMORY 0x20080
#define RB_PROFILE_BEGIN 0
#define RB_PROFILE_END 0x1F600
typedef struct shearwater_predator_device_t {
shearwater_common_device_t base;
unsigned char fingerprint[4];
} shearwater_predator_device_t;
static dc_status_t shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t shearwater_predator_device_close (dc_device_t *abstract);
static const dc_device_vtable_t shearwater_predator_device_vtable = {
DC_FAMILY_SHEARWATER_PREDATOR,
shearwater_predator_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
shearwater_predator_device_dump, /* dump */
shearwater_predator_device_foreach, /* foreach */
shearwater_predator_device_close /* close */
};
dc_status_t
shearwater_predator_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t rc = DC_STATUS_SUCCESS;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
shearwater_predator_device_t *device = (shearwater_predator_device_t *) malloc (sizeof (shearwater_predator_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base.base, context, &shearwater_predator_device_vtable);
// Set the default values.
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
rc = shearwater_common_open (&device->base, context, name);
if (rc != DC_STATUS_SUCCESS) {
free (device);
return rc;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_device_close (dc_device_t *abstract)
{
dc_status_t rc = DC_STATUS_SUCCESS;
shearwater_common_device_t *device = (shearwater_common_device_t *) abstract;
// Close the device.
rc = shearwater_common_close (device);
// Free memory.
free (device);
return rc;
}
static dc_status_t
shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
shearwater_common_device_t *device = (shearwater_common_device_t *) abstract;
// Erase the current contents of the buffer.
if (!dc_buffer_clear (buffer) || !dc_buffer_reserve (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
return shearwater_common_download (device, buffer, 0xDD000000, SZ_MEMORY, 0);
}
static dc_status_t
shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = shearwater_predator_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
// Emit a device info event.
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = data[0x2000D];
devinfo.firmware = data[0x2000A];
devinfo.serial = array_uint32_le (data + 0x20002);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = shearwater_predator_extract_dives (abstract, data, SZ_MEMORY, callback, userdata);
dc_buffer_free (buffer);
return rc;
}
static dc_status_t
shearwater_predator_extract_predator (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
// Locate the most recent dive.
// The device maintains an internal counter which is incremented for every
// dive, and the current value at the time of the dive is stored in the
// dive header. Thus the most recent dive will have the highest value.
unsigned int maximum = 0;
unsigned int eop = RB_PROFILE_END;
// Search the ringbuffer backwards to locate matching header and
// footer markers. Because the ringbuffer search algorithm starts at
// some arbitrary position, which does not necessary corresponds
// with a boundary between two dives, the begin position is adjusted
// as soon as the first dive has been found. Without this step,
// dives crossing the ringbuffer wrap point won't be detected when
// searching backwards from the ringbuffer end offset.
unsigned int footer = 0;
unsigned int have_footer = 0;
unsigned int begin = RB_PROFILE_BEGIN;
unsigned int offset = RB_PROFILE_END;
while (offset != begin) {
// Handle the ringbuffer wrap point.
if (offset == RB_PROFILE_BEGIN)
offset = RB_PROFILE_END;
// Move to the start of the block.
offset -= SZ_BLOCK;
if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) {
// Ignore empty blocks explicitly, because otherwise they are
// incorrectly recognized as header markers.
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF && have_footer) {
// If the first header marker is found, the begin offset is moved
// after the corresponding footer marker. This is necessary to be
// able to detect dives that cross the ringbuffer wrap point.
if (begin == RB_PROFILE_BEGIN)
begin = footer + SZ_BLOCK;
// Get the internal dive number.
unsigned int current = array_uint16_be (data + offset + 2);
if (current > maximum) {
maximum = current;
eop = footer + SZ_BLOCK;
}
// The dive number in the header and footer should be identical.
if (current != array_uint16_be (data + footer + 2)) {
ERROR (context, "Unexpected dive number.");
return DC_STATUS_DATAFORMAT;
}
// Reset the footer marker.
have_footer = 0;
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE) {
// Remember the footer marker.
footer = offset;
have_footer = 1;
}
}
// Allocate memory for the profiles.
unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN + SZ_BLOCK);
if (buffer == NULL) {
return DC_STATUS_NOMEMORY;
}
// Linearize the ringbuffer.
memcpy (buffer + 0, data + eop, RB_PROFILE_END - eop);
memcpy (buffer + RB_PROFILE_END - eop, data + RB_PROFILE_BEGIN, eop - RB_PROFILE_BEGIN);
// Find the dives again in the linear buffer.
footer = 0;
have_footer = 0;
offset = RB_PROFILE_END;
while (offset != RB_PROFILE_BEGIN) {
// Move to the start of the block.
offset -= SZ_BLOCK;
if (array_isequal (buffer + offset, SZ_BLOCK, 0xFF)) {
break;
} else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFF && have_footer) {
// Append the final block.
unsigned int length = footer + SZ_BLOCK - offset;
memcpy (buffer + offset + length, data + SZ_MEMORY - SZ_BLOCK, SZ_BLOCK);
// Check the fingerprint data.
if (device && memcmp (buffer + offset + 12, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
if (callback && !callback (buffer + offset, length + SZ_BLOCK, buffer + offset + 12, sizeof (device->fingerprint), userdata))
break;
have_footer = 0;
} else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFE) {
footer = offset;
have_footer = 1;
}
}
free (buffer);
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_extract_petrel (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
// Allocate memory for the profiles.
unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN + SZ_BLOCK);
if (buffer == NULL) {
return DC_STATUS_NOMEMORY;
}
// Search the ringbuffer to locate matching header and footer
// markers. Because the Petrel does reorder the internal ringbuffer
// before sending the data, the most recent dive is always the first
// one. Therefore, there is no need to search for it, as we have to
// do for the Predator.
unsigned int header = 0;
unsigned int have_header = 0;
unsigned int offset = RB_PROFILE_BEGIN;
while (offset != RB_PROFILE_END) {
if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) {
// Ignore empty blocks explicitly, because otherwise they are
// incorrectly recognized as header markers.
break;
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF) {
// Remember the header marker.
header = offset;
have_header = 1;
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE && have_header) {
// The dive number in the header and footer should be identical.
if (memcmp (data + header + 2, data + offset + 2, 2) != 0) {
ERROR (context, "Unexpected dive number.");
free (buffer);
return DC_STATUS_DATAFORMAT;
}
// Append the final block.
unsigned int length = offset + SZ_BLOCK - header;
memcpy (buffer, data + header, length);
memcpy (buffer + length, data + SZ_MEMORY - SZ_BLOCK, SZ_BLOCK);
// Check the fingerprint data.
if (device && memcmp (buffer + 12, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
if (callback && !callback (buffer, length + SZ_BLOCK, buffer + 12, sizeof (device->fingerprint), userdata))
break;
// Reset the header marker.
have_header = 0;
}
offset += SZ_BLOCK;
}
free (buffer);
return DC_STATUS_SUCCESS;
}
dc_status_t
shearwater_predator_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
unsigned int model = data[0x2000D];
if (model == PETREL) {
return shearwater_predator_extract_petrel (abstract, data, size, callback, userdata);
} else {
return shearwater_predator_extract_predator (abstract, data, size, callback, userdata);
}
}