libdivecomputer/src/oceanic_atom2_parser.c
Jef Driesen 1a3c919a82 Fix temperature and tank pressure for the Tusa Element II.
The Tusa Element II is a non air integrated model, and the temperature
is stored at a different location.
2013-05-11 23:00:32 +02:00

587 lines
17 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2009 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <libdivecomputer/oceanic_atom2.h>
#include <libdivecomputer/units.h>
#include "oceanic_common.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ATOM1 0x4250
#define EPICA 0x4257
#define VT3 0x4258
#define T3 0x4259
#define ATOM2 0x4342
#define GEO 0x4344
#define DATAMASK 0x4347
#define COMPUMASK 0x4348
#define OC1A 0x434E
#define F10 0x434D
#define ELEMENT2 0x4357
#define VEO20 0x4359
#define VEO30 0x435A
#define ZENAIR 0x4442
#define PROPLUS21 0x4444
#define GEO20 0x4446
#define VT4 0x4447
#define OC1B 0x4449
#define ATOM3 0x444C
#define DG03 0x444D
#define OCS 0x4450
#define OC1C 0x4451
#define VT41 0x4452
#define EPICB 0x4453
#define ATOM31 0x4456
#define A300AI 0x4457
#define PROPLUS3 0x4548
typedef struct oceanic_atom2_parser_t oceanic_atom2_parser_t;
struct oceanic_atom2_parser_t {
dc_parser_t base;
unsigned int model;
// Cached fields.
unsigned int cached;
unsigned int divetime;
double maxdepth;
};
static dc_status_t oceanic_atom2_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t oceanic_atom2_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t oceanic_atom2_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t oceanic_atom2_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static dc_status_t oceanic_atom2_parser_destroy (dc_parser_t *abstract);
static const parser_backend_t oceanic_atom2_parser_backend = {
DC_FAMILY_OCEANIC_ATOM2,
oceanic_atom2_parser_set_data, /* set_data */
oceanic_atom2_parser_get_datetime, /* datetime */
oceanic_atom2_parser_get_field, /* fields */
oceanic_atom2_parser_samples_foreach, /* samples_foreach */
oceanic_atom2_parser_destroy /* destroy */
};
static int
parser_is_oceanic_atom2 (dc_parser_t *abstract)
{
if (abstract == NULL)
return 0;
return abstract->backend == &oceanic_atom2_parser_backend;
}
dc_status_t
oceanic_atom2_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) malloc (sizeof (oceanic_atom2_parser_t));
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
parser_init (&parser->base, context, &oceanic_atom2_parser_backend);
// Set the default values.
parser->model = model;
parser->cached = 0;
parser->divetime = 0;
parser->maxdepth = 0.0;
*out = (dc_parser_t*) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_atom2_parser_destroy (dc_parser_t *abstract)
{
if (! parser_is_oceanic_atom2 (abstract))
return DC_STATUS_INVALIDARGS;
// Free memory.
free (abstract);
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_atom2_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract;
if (! parser_is_oceanic_atom2 (abstract))
return DC_STATUS_INVALIDARGS;
// Reset the cache.
parser->cached = 0;
parser->divetime = 0;
parser->maxdepth = 0.0;
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_atom2_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract;
unsigned int header = 8;
if (parser->model == F10)
header = 32;
if (abstract->size < header)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
if (datetime) {
// AM/PM bit of the 12-hour clock.
unsigned int pm = p[1] & 0x80;
switch (parser->model) {
case OC1A:
case OC1B:
case OC1C:
case OCS:
case VT4:
case VT41:
case ATOM3:
case ATOM31:
case A300AI:
datetime->year = ((p[5] & 0xE0) >> 5) + ((p[7] & 0xE0) >> 2) + 2000;
datetime->month = (p[3] & 0x0F);
datetime->day = ((p[0] & 0x80) >> 3) + ((p[3] & 0xF0) >> 4);
datetime->hour = bcd2dec (p[1] & 0x1F);
datetime->minute = bcd2dec (p[0] & 0x7F);
break;
case VT3:
case VEO20:
case VEO30:
case GEO20:
case DG03:
datetime->year = ((p[3] & 0xE0) >> 1) + (p[4] & 0x0F) + 2000;
datetime->month = (p[4] & 0xF0) >> 4;
datetime->day = p[3] & 0x1F;
datetime->hour = bcd2dec (p[1] & 0x7F);
datetime->minute = bcd2dec (p[0]);
break;
case ZENAIR:
datetime->year = (p[3] & 0x0F) + 2000;
datetime->month = (p[7] & 0xF0) >> 4;
datetime->day = ((p[3] & 0x80) >> 3) + ((p[5] & 0xF0) >> 4);
datetime->hour = bcd2dec (p[1] & 0x1F);
datetime->minute = bcd2dec (p[0]);
break;
case F10:
datetime->year = bcd2dec (p[6]) + 2000;
datetime->month = bcd2dec (p[7]);
datetime->day = bcd2dec (p[8]);
datetime->hour = bcd2dec (p[13] & 0x7F);
datetime->minute = bcd2dec (p[12]);
pm = p[13] & 0x80;
break;
default:
datetime->year = bcd2dec (((p[3] & 0xC0) >> 2) + (p[4] & 0x0F)) + 2000;
datetime->month = (p[4] & 0xF0) >> 4;
if (parser->model == T3)
datetime->day = p[3] & 0x3F;
else
datetime->day = bcd2dec (p[3] & 0x3F);
datetime->hour = bcd2dec (p[1] & 0x1F);
datetime->minute = bcd2dec (p[0]);
break;
}
datetime->second = 0;
// Convert to a 24-hour clock.
datetime->hour %= 12;
if (pm)
datetime->hour += 12;
/*
* Workaround for the year 2010 problem.
*
* In theory there are more than enough bits available to store years
* past 2010. Unfortunately some models do not use all those bits and
* store only the last digit of the year. We try to guess the missing
* information based on the current year. This should work in most
* cases, except when the dive is more than 10 years old or in the
* future (due to an incorrect clock on the device or the host system).
*
* Note that we are careful not to apply any guessing when the year is
* actually stored with more bits. We don't want the code to break when
* a firmware update fixes this bug.
*/
if (datetime->year < 2010) {
// Retrieve the current year.
dc_datetime_t now = {0};
if (dc_datetime_localtime (&now, dc_datetime_now ()) &&
now.year >= 2010)
{
// Guess the correct decade.
int decade = (now.year / 10) * 10;
if (datetime->year % 10 > now.year % 10)
decade -= 10; /* Force back to the previous decade. */
// Adjust the year.
datetime->year += decade - 2000;
}
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_atom2_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
// Get the total amount of bytes before and after the profile data.
unsigned int headersize = 9 * PAGESIZE / 2;
unsigned int footersize = 2 * PAGESIZE / 2;
if (parser->model == DATAMASK || parser->model == COMPUMASK ||
parser->model == GEO || parser->model == GEO20 ||
parser->model == VEO20 || parser->model == VEO30 ||
parser->model == OCS || parser->model == PROPLUS3) {
headersize -= PAGESIZE;
} else if (parser->model == VT4 || parser->model == VT41) {
headersize += PAGESIZE;
} else if (parser->model == ATOM1) {
headersize -= 2 * PAGESIZE;
} else if (parser->model == F10) {
headersize = 3 * PAGESIZE;
footersize = PAGESIZE / 2;
}
if (size < headersize + footersize)
return DC_STATUS_DATAFORMAT;
// Get the offset to the header and footer sample.
unsigned int header = headersize - PAGESIZE / 2;
unsigned int footer = size - footersize;
if (parser->model == VT4 || parser->model == VT41) {
header = 3 * PAGESIZE;
}
if (!parser->cached) {
sample_statistics_t statistics = SAMPLE_STATISTICS_INITIALIZER;
dc_status_t rc = oceanic_atom2_parser_samples_foreach (
abstract, sample_statistics_cb, &statistics);
if (rc != DC_STATUS_SUCCESS)
return rc;
parser->cached = 1;
parser->divetime = statistics.divetime;
parser->maxdepth = statistics.maxdepth;
}
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
unsigned int nitrox = 0;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
if (parser->model == F10)
*((unsigned int *) value) = bcd2dec (data[2]) + bcd2dec (data[3]) * 60 + bcd2dec (data[1]) * 3600;
else
*((unsigned int *) value) = parser->divetime;
break;
case DC_FIELD_MAXDEPTH:
if (parser->model == F10)
*((double *) value) = array_uint16_le (data + 4) / 16.0 * FEET;
else
*((double *) value) = array_uint16_le (data + footer + 4) / 16.0 * FEET;
break;
case DC_FIELD_GASMIX_COUNT:
if (parser->model == DATAMASK || parser->model == COMPUMASK)
*((unsigned int *) value) = 1;
else if (parser->model == VT4 || parser->model == VT41)
*((unsigned int *) value) = 4;
else
*((unsigned int *) value) = 3;
break;
case DC_FIELD_GASMIX:
if (parser->model == DATAMASK || parser->model == COMPUMASK)
nitrox = data[header + 3];
else
nitrox = data[header + 4 + flags];
gasmix->helium = 0.0;
gasmix->oxygen = (nitrox ? nitrox / 100.0 : 0.21);
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
oceanic_atom2_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract;
if (! parser_is_oceanic_atom2 (abstract))
return DC_STATUS_INVALIDARGS;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
// Get the total amount of bytes before and after the profile data.
unsigned int headersize = 9 * PAGESIZE / 2;
unsigned int footersize = 2 * PAGESIZE / 2;
if (parser->model == DATAMASK || parser->model == COMPUMASK ||
parser->model == GEO || parser->model == GEO20 ||
parser->model == VEO20 || parser->model == VEO30 ||
parser->model == OCS || parser->model == PROPLUS3) {
headersize -= PAGESIZE;
} else if (parser->model == VT4 || parser->model == VT41) {
headersize += PAGESIZE;
} else if (parser->model == ATOM1) {
headersize -= 2 * PAGESIZE;
} else if (parser->model == F10) {
headersize = 3 * PAGESIZE;
footersize = PAGESIZE / 2;
}
if (size < headersize + footersize)
return DC_STATUS_DATAFORMAT;
// Get the offset to the header sample.
unsigned int header = headersize - PAGESIZE / 2;
unsigned int time = 0;
unsigned int interval = 1;
if (parser->model != F10) {
switch (data[0x17] & 0x03) {
case 0:
interval = 2;
break;
case 1:
interval = 15;
break;
case 2:
interval = 30;
break;
case 3:
interval = 60;
break;
}
}
unsigned int samplesize = PAGESIZE / 2;
if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C)
samplesize = PAGESIZE;
else if (parser->model == F10)
samplesize = 2;
unsigned int have_temperature = 1, have_pressure = 1;
if (parser->model == VEO30 || parser->model == OCS ||
parser->model == ELEMENT2) {
have_pressure = 0;
} else if (parser->model == F10) {
have_temperature = 0;
have_pressure = 0;
}
// Initial temperature.
unsigned int temperature = 0;
if (have_temperature) {
temperature = data[header + 7];
}
// Initial tank pressure.
unsigned int tank = 0;
unsigned int pressure = 0;
if (have_pressure) {
pressure = data[header + 2] + (data[header + 3] << 8);
if (pressure == 10000)
have_pressure = 0;
}
unsigned int complete = 1;
unsigned int offset = headersize;
while (offset + samplesize <= size - footersize) {
dc_sample_value_t sample = {0};
// Ignore empty samples.
if (array_isequal (data + offset, samplesize, 0x00) ||
array_isequal (data + offset, samplesize, 0xFF)) {
offset += samplesize;
continue;
}
// Time.
if (complete) {
time += interval;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
complete = 0;
}
// Get the sample type.
unsigned int sampletype = data[offset + 0];
if (parser->model == F10)
sampletype = 0;
// The sample size is usually fixed, but some sample types have a
// larger size. Check whether we have that many bytes available.
unsigned int length = samplesize;
if (sampletype == 0xBB) {
length = PAGESIZE;
if (offset + length > size - PAGESIZE)
return DC_STATUS_DATAFORMAT;
}
// Vendor specific data
sample.vendor.type = SAMPLE_VENDOR_OCEANIC_ATOM2;
sample.vendor.size = length;
sample.vendor.data = data + offset;
if (callback) callback (DC_SAMPLE_VENDOR, sample, userdata);
// Check for a tank switch sample.
if (sampletype == 0xAA) {
if (parser->model == DATAMASK || parser->model == COMPUMASK) {
// Tank pressure (1 psi) and number
tank = 0;
pressure = (((data[offset + 7] << 8) + data[offset + 6]) & 0x0FFF);
} else {
// Tank pressure (2 psi) and number (one based index)
tank = (data[offset + 1] & 0x03) - 1;
if (parser->model == ATOM2 || parser->model == EPICA || parser->model == EPICB)
pressure = (((data[offset + 3] << 8) + data[offset + 4]) & 0x0FFF) * 2;
else
pressure = (((data[offset + 4] << 8) + data[offset + 5]) & 0x0FFF) * 2;
}
} else if (sampletype == 0xBB) {
// The surface time is not always a nice multiple of the samplerate.
// The number of inserted surface samples is therefore rounded down
// to keep the timestamps aligned at multiples of the samplerate.
unsigned int surftime = 60 * bcd2dec (data[offset + 1]) + bcd2dec (data[offset + 2]);
unsigned int nsamples = surftime / interval;
for (unsigned int i = 0; i < nsamples; ++i) {
if (complete) {
time += interval;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
}
sample.depth = 0.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
complete = 1;
}
} else {
// Temperature (°F)
if (have_temperature) {
if (parser->model == GEO || parser->model == ATOM1 ||
parser->model == ELEMENT2) {
temperature = data[offset + 6];
} else if (parser->model == GEO20 || parser->model == VEO20 ||
parser->model == VEO30 || parser->model == OC1A ||
parser->model == OC1B || parser->model == OC1C) {
temperature = data[offset + 3];
} else if (parser->model == OCS) {
temperature = data[offset + 1];
} else if (parser->model == VT4 || parser->model == VT41 || parser->model == ATOM3 || parser->model == ATOM31 || parser->model == A300AI) {
temperature = ((data[offset + 7] & 0xF0) >> 4) | ((data[offset + 7] & 0x0C) << 2) | ((data[offset + 5] & 0x0C) << 4);
} else {
unsigned int sign;
if (parser->model == DG03 || parser->model == PROPLUS3)
sign = (~data[offset + 5] & 0x04) >> 2;
else if (parser->model == ATOM2 || parser->model == PROPLUS21 ||
parser->model == EPICA || parser->model == EPICB)
sign = (data[offset + 0] & 0x80) >> 7;
else
sign = (~data[offset + 0] & 0x80) >> 7;
if (sign)
temperature -= (data[offset + 7] & 0x0C) >> 2;
else
temperature += (data[offset + 7] & 0x0C) >> 2;
}
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
}
// Tank Pressure (psi)
if (have_pressure) {
if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C)
pressure = (data[offset + 10] + (data[offset + 11] << 8)) & 0x0FFF;
else if (parser->model == VT4 || parser->model == VT41||
parser->model == ATOM3 || parser->model == ATOM31 ||
parser->model == ZENAIR ||parser->model == A300AI ||
parser->model == DG03 || parser->model == PROPLUS3)
pressure = (((data[offset + 0] & 0x03) << 8) + data[offset + 1]) * 5;
else
pressure -= data[offset + 1];
sample.pressure.tank = tank;
sample.pressure.value = pressure * PSI / BAR;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
}
// Depth (1/16 ft)
unsigned int depth;
if (parser->model == GEO20 || parser->model == VEO20 ||
parser->model == VEO30 || parser->model == OC1A ||
parser->model == OC1B || parser->model == OC1C)
depth = (data[offset + 4] + (data[offset + 5] << 8)) & 0x0FFF;
else if (parser->model == ATOM1)
depth = data[offset + 3] * 16;
else if (parser->model == F10)
depth = array_uint16_le (data + offset);
else
depth = (data[offset + 2] + (data[offset + 3] << 8)) & 0x0FFF;
sample.depth = depth / 16.0 * FEET;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
complete = 1;
}
offset += length;
}
return DC_STATUS_SUCCESS;
}