libdivecomputer/src/mares_iconhd_parser.c
Jef Driesen 156f54302d Add basic timezone support
Allthough most dive computers always use local time and don't support
timezones at all, there are a few exceptions. There are two different
sources of timezone information:

 - Some of the newer Uwatec/Scubapro devices use UTC internally and also
   support a timezone setting. This UTC offset is currently taken into
   account to obtain the dive date/time, but the UTC offset itself is
   lost.

 - Uwatec/Scubapro and Reefnet devices rely on the clock of the host
   system to synchronize the internal device clock and calculate the
   dive date/time. The consequence is that the resulting date/time is
   always in the timezone of the host system.

In order to preserve this timezone information, the dc_datetime_t
structure is extended with a new "timezone" field, containing the UTC
offset in seconds. Devices without timezone support will set the field
to the special value DC_TIMEZONE_NONE.

The dc_datetime_localtime() and dc_datetime_gmtime() functions will
automatically populate the new field with respectively the local
timezone offset and zero. The dc_datetime_mktime() function will take
into account the new timezone field for the conversion to UTC. The
special value DC_TIMEZONE_NONE is interpreted as zero.
2017-08-18 23:26:45 +02:00

623 lines
18 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2010 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <libdivecomputer/units.h>
#include "mares_iconhd.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) dc_parser_isinstance((parser), &mares_iconhd_parser_vtable)
#define SMART 0x000010
#define SMARTAPNEA 0x010010
#define ICONHD 0x14
#define ICONHDNET 0x15
#define NGASMIXES 3
#define NTANKS NGASMIXES
#define AIR 0
#define GAUGE 1
#define NITROX 2
#define FREEDIVE 3
typedef struct mares_iconhd_parser_t mares_iconhd_parser_t;
struct mares_iconhd_parser_t {
dc_parser_t base;
unsigned int model;
// Cached fields.
unsigned int cached;
unsigned int mode;
unsigned int nsamples;
unsigned int footer;
unsigned int samplesize;
unsigned int settings;
unsigned int interval;
unsigned int samplerate;
unsigned int ntanks;
unsigned int ngasmixes;
unsigned int oxygen[NGASMIXES];
};
static dc_status_t mares_iconhd_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t mares_iconhd_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t mares_iconhd_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t mares_iconhd_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t mares_iconhd_parser_vtable = {
sizeof(mares_iconhd_parser_t),
DC_FAMILY_MARES_ICONHD,
mares_iconhd_parser_set_data, /* set_data */
mares_iconhd_parser_get_datetime, /* datetime */
mares_iconhd_parser_get_field, /* fields */
mares_iconhd_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
static dc_status_t
mares_iconhd_parser_cache (mares_iconhd_parser_t *parser)
{
dc_parser_t *abstract = (dc_parser_t *) parser;
const unsigned char *data = parser->base.data;
unsigned int size = parser->base.size;
if (parser->cached) {
return DC_STATUS_SUCCESS;
}
unsigned int header = 0x5C;
if (parser->model == ICONHDNET)
header = 0x80;
else if (parser->model == SMART)
header = 4; // Type and number of samples only!
else if (parser->model == SMARTAPNEA)
header = 6; // Type and number of samples only!
if (size < header + 4) {
ERROR (abstract->context, "Buffer overflow detected!");
return DC_STATUS_DATAFORMAT;
}
unsigned int length = array_uint32_le (data);
if (length > size) {
ERROR (abstract->context, "Buffer overflow detected!");
return DC_STATUS_DATAFORMAT;
}
// Get the number of samples in the profile data.
unsigned int type = 0, nsamples = 0;
if (parser->model == SMART || parser->model == SMARTAPNEA) {
type = array_uint16_le (data + length - header + 2);
nsamples = array_uint16_le (data + length - header + 0);
} else {
type = array_uint16_le (data + length - header + 0);
nsamples = array_uint16_le (data + length - header + 2);
}
// Get the dive mode.
unsigned int mode = type & 0x03;
// Get the header and sample size.
unsigned int headersize = 0x5C;
unsigned int samplesize = 8;
if (parser->model == ICONHDNET) {
headersize = 0x80;
samplesize = 12;
} else if (parser->model == SMART) {
if (mode == FREEDIVE) {
headersize = 0x2E;
samplesize = 6;
} else {
headersize = 0x5C;
samplesize = 8;
}
} else if (parser->model == SMARTAPNEA) {
headersize = 0x50;
samplesize = 14;
}
if (length < headersize) {
ERROR (abstract->context, "Buffer overflow detected!");
return DC_STATUS_DATAFORMAT;
}
const unsigned char *p = data + length - headersize;
if (parser->model != SMART && parser->model != SMARTAPNEA) {
p += 4;
}
// Get the dive settings.
unsigned int settings = 0;
if (parser->model == SMARTAPNEA) {
settings = array_uint16_le (p + 0x1C);
} else if (parser->mode == FREEDIVE) {
settings = array_uint16_le (p + 0x08);
} else {
settings = array_uint16_le (p + 0x0C);
}
// Get the sample interval.
unsigned int interval = 0;
unsigned int samplerate = 0;
if (parser->model == SMARTAPNEA) {
unsigned int idx = (settings & 0x0600) >> 9;
interval = 1;
samplerate = 1 << idx;
} else {
const unsigned int intervals[] = {1, 5, 10, 20};
unsigned int idx = (settings & 0x0C00) >> 10;
interval = intervals[idx];
samplerate = 1;
}
// Calculate the total number of bytes for this dive.
unsigned int nbytes = 4 + headersize + nsamples * samplesize;
if (parser->model == ICONHDNET) {
nbytes += (nsamples / 4) * 8;
} else if (parser->model == SMARTAPNEA) {
unsigned int divetime = array_uint32_le (p + 0x24);
nbytes += divetime * samplerate * 2;
}
if (length != nbytes) {
ERROR (abstract->context, "Calculated and stored size are not equal.");
return DC_STATUS_DATAFORMAT;
}
// Gas mixes
unsigned int ngasmixes = 0;
unsigned int oxygen[NGASMIXES] = {0};
if (mode == GAUGE || mode == FREEDIVE) {
ngasmixes = 0;
} else if (mode == AIR) {
oxygen[0] = 21;
ngasmixes = 1;
} else {
// Count the number of active gas mixes. The active gas
// mixes are always first, so we stop counting as soon
// as the first gas marked as disabled is found.
ngasmixes = 0;
while (ngasmixes < NGASMIXES) {
if (p[0x10 + ngasmixes * 4 + 1] & 0x80)
break;
oxygen[ngasmixes] = p[0x10 + ngasmixes * 4];
ngasmixes++;
}
}
// Tanks
unsigned int ntanks = 0;
if (parser->model == ICONHDNET) {
while (ntanks < NTANKS) {
unsigned int beginpressure = array_uint16_le (p + 0x58 + ntanks * 4 + 0);
unsigned int endpressure = array_uint16_le (p + 0x58 + ntanks * 4 + 2);
if (beginpressure == 0 && (endpressure == 0 || endpressure == 36000))
break;
ntanks++;
}
}
// Cache the data for later use.
parser->mode = mode;
parser->nsamples = nsamples;
parser->footer = length - headersize;
parser->samplesize = samplesize;
parser->settings = settings;
parser->interval = interval;
parser->samplerate = samplerate;
parser->ntanks = ntanks;
parser->ngasmixes = ngasmixes;
for (unsigned int i = 0; i < ngasmixes; ++i) {
parser->oxygen[i] = oxygen[i];
}
parser->cached = 1;
return DC_STATUS_SUCCESS;
}
dc_status_t
mares_iconhd_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model)
{
mares_iconhd_parser_t *parser = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
parser = (mares_iconhd_parser_t *) dc_parser_allocate (context, &mares_iconhd_parser_vtable);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
parser->model = model;
parser->cached = 0;
parser->mode = AIR;
parser->nsamples = 0;
parser->footer = 0;
parser->samplesize = 0;
parser->settings = 0;
parser->interval = 0;
parser->samplerate = 0;
parser->ntanks = 0;
parser->ngasmixes = 0;
for (unsigned int i = 0; i < NGASMIXES; ++i) {
parser->oxygen[i] = 0;
}
*out = (dc_parser_t*) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_iconhd_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
mares_iconhd_parser_t *parser = (mares_iconhd_parser_t *) abstract;
// Reset the cache.
parser->cached = 0;
parser->mode = AIR;
parser->nsamples = 0;
parser->footer = 0;
parser->samplesize = 0;
parser->settings = 0;
parser->interval = 0;
parser->samplerate = 0;
parser->ntanks = 0;
parser->ngasmixes = 0;
for (unsigned int i = 0; i < NGASMIXES; ++i) {
parser->oxygen[i] = 0;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_iconhd_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
mares_iconhd_parser_t *parser = (mares_iconhd_parser_t *) abstract;
// Cache the parser data.
dc_status_t rc = mares_iconhd_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
const unsigned char *p = abstract->data + parser->footer;
if (parser->model == SMART) {
if (parser->mode == FREEDIVE) {
p += 0x20;
} else {
p += 2;
}
} else if (parser->model == SMARTAPNEA) {
p += 0x40;
} else {
p += 6;
}
if (datetime) {
datetime->hour = array_uint16_le (p + 0);
datetime->minute = array_uint16_le (p + 2);
datetime->second = 0;
datetime->day = array_uint16_le (p + 4);
datetime->month = array_uint16_le (p + 6) + 1;
datetime->year = array_uint16_le (p + 8) + 1900;
datetime->timezone = DC_TIMEZONE_NONE;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_iconhd_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
mares_iconhd_parser_t *parser = (mares_iconhd_parser_t *) abstract;
// Cache the parser data.
dc_status_t rc = mares_iconhd_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
const unsigned char *p = abstract->data + parser->footer;
if (parser->model != SMART && parser->model != SMARTAPNEA) {
p += 4;
}
unsigned int volume = 0, workpressure = 0;
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_tank_t *tank = (dc_tank_t *) value;
dc_salinity_t *water = (dc_salinity_t *) value;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
if (parser->model == SMARTAPNEA) {
*((unsigned int *) value) = array_uint16_le (p + 0x24);
} else if (parser->mode == FREEDIVE) {
unsigned int divetime = 0;
unsigned int offset = 4;
for (unsigned int i = 0; i < parser->nsamples; ++i) {
divetime += array_uint16_le (abstract->data + offset + 2);
offset += parser->samplesize;
}
*((unsigned int *) value) = divetime;
} else {
*((unsigned int *) value) = parser->nsamples * parser->interval;
}
break;
case DC_FIELD_MAXDEPTH:
if (parser->model == SMARTAPNEA)
*((double *) value) = array_uint16_le (p + 0x3A) / 10.0;
else if (parser->mode == FREEDIVE)
*((double *) value) = array_uint16_le (p + 0x1A) / 10.0;
else
*((double *) value) = array_uint16_le (p + 0x00) / 10.0;
break;
case DC_FIELD_GASMIX_COUNT:
*((unsigned int *) value) = parser->ngasmixes;
break;
case DC_FIELD_GASMIX:
gasmix->oxygen = parser->oxygen[flags] / 100.0;
gasmix->helium = 0.0;
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_TANK_COUNT:
*((unsigned int *) value) = parser->ntanks;
break;
case DC_FIELD_TANK:
volume = array_uint16_le (p + 0x64 + flags * 8 + 0);
workpressure = array_uint16_le (p + 0x64 + flags * 8 + 2);
if (parser->settings & 0x0100) {
tank->type = DC_TANKVOLUME_METRIC;
tank->volume = volume;
tank->workpressure = workpressure;
} else {
if (workpressure == 0)
return DC_STATUS_DATAFORMAT;
tank->type = DC_TANKVOLUME_IMPERIAL;
tank->volume = volume * CUFT * 1000.0;
tank->volume /= workpressure * PSI / ATM;
tank->workpressure = workpressure * PSI / BAR;
}
tank->beginpressure = array_uint16_le (p + 0x58 + flags * 4 + 0) / 100.0;
tank->endpressure = array_uint16_le (p + 0x58 + flags * 4 + 2) / 100.0;
if (flags < parser->ngasmixes) {
tank->gasmix = flags;
} else {
tank->gasmix = DC_GASMIX_UNKNOWN;
}
break;
case DC_FIELD_ATMOSPHERIC:
// Pressure (1/8 millibar)
if (parser->model == SMARTAPNEA)
*((double *) value) = array_uint16_le (p + 0x38) / 1000.0;
else if (parser->mode == FREEDIVE)
*((double *) value) = array_uint16_le (p + 0x18) / 1000.0;
else
*((double *) value) = array_uint16_le (p + 0x22) / 8000.0;
break;
case DC_FIELD_SALINITY:
if (parser->model == SMARTAPNEA) {
unsigned int salinity = parser->settings & 0x003F;
if (salinity == 0) {
water->type = DC_WATER_FRESH;
} else {
water->type = DC_WATER_SALT;
}
water->density = 1000.0 + salinity;
} else {
if (parser->settings & 0x0010) {
water->type = DC_WATER_FRESH;
} else {
water->type = DC_WATER_SALT;
}
water->density = 0.0;
}
break;
case DC_FIELD_TEMPERATURE_MINIMUM:
if (parser->model == SMARTAPNEA)
*((double *) value) = (signed short) array_uint16_le (p + 0x3C) / 10.0;
else if (parser->mode == FREEDIVE)
*((double *) value) = (signed short) array_uint16_le (p + 0x1C) / 10.0;
else
*((double *) value) = (signed short) array_uint16_le (p + 0x42) / 10.0;
break;
case DC_FIELD_TEMPERATURE_MAXIMUM:
if (parser->model == SMARTAPNEA)
*((double *) value) = (signed short) array_uint16_le (p + 0x3E) / 10.0;
else if (parser->mode == FREEDIVE)
*((double *) value) = (signed short) array_uint16_le (p + 0x1E) / 10.0;
else
*((double *) value) = (signed short) array_uint16_le (p + 0x44) / 10.0;
break;
case DC_FIELD_DIVEMODE:
switch (parser->mode) {
case AIR:
case NITROX:
*((dc_divemode_t *) value) = DC_DIVEMODE_OC;
break;
case GAUGE:
*((dc_divemode_t *) value) = DC_DIVEMODE_GAUGE;
break;
case FREEDIVE:
*((dc_divemode_t *) value) = DC_DIVEMODE_FREEDIVE;
break;
default:
return DC_STATUS_DATAFORMAT;
}
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_iconhd_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
mares_iconhd_parser_t *parser = (mares_iconhd_parser_t *) abstract;
// Cache the parser data.
dc_status_t rc = mares_iconhd_parser_cache (parser);
if (rc != DC_STATUS_SUCCESS)
return rc;
const unsigned char *data = abstract->data;
if (parser->samplerate > 1) {
// The Smart Apnea supports multiple samples per second
// (e.g. 2, 4 or 8). Since our smallest unit of time is one
// second, we can't represent this, and the extra samples
// will get dropped.
WARNING(abstract->context, "Multiple samples per second are not supported!");
}
// Previous gas mix - initialize with impossible value
unsigned int gasmix_previous = 0xFFFFFFFF;
unsigned int time = 0;
unsigned int offset = 4;
unsigned int nsamples = 0;
while (nsamples < parser->nsamples) {
dc_sample_value_t sample = {0};
if (parser->model == SMARTAPNEA) {
unsigned int maxdepth = array_uint16_le (data + offset + 0);
unsigned int divetime = array_uint16_le (data + offset + 2);
unsigned int surftime = array_uint16_le (data + offset + 4);
// Surface Time (seconds).
time += surftime;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Surface Depth (0 m).
sample.depth = 0.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
offset += parser->samplesize;
nsamples++;
for (unsigned int i = 0; i < divetime; ++i) {
// Time (seconds).
time += parser->interval;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Depth (1/10 m).
unsigned int depth = array_uint16_le (data + offset);
sample.depth = depth / 10.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
offset += 2 * parser->samplerate;
}
} else if (parser->mode == FREEDIVE) {
unsigned int maxdepth = array_uint16_le (data + offset + 0);
unsigned int divetime = array_uint16_le (data + offset + 2);
unsigned int surftime = array_uint16_le (data + offset + 4);
// Surface Time (seconds).
time += surftime;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Surface Depth (0 m).
sample.depth = 0.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Dive Time (seconds).
time += divetime;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Maximum Depth (1/10 m).
sample.depth = maxdepth / 10.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
offset += parser->samplesize;
nsamples++;
} else {
// Time (seconds).
time += parser->interval;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Depth (1/10 m).
unsigned int depth = array_uint16_le (data + offset + 0);
sample.depth = depth / 10.0;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Temperature (1/10 °C).
unsigned int temperature = array_uint16_le (data + offset + 2) & 0x0FFF;
sample.temperature = temperature / 10.0;
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
// Current gas mix
unsigned int gasmix = (data[offset + 3] & 0xF0) >> 4;
if (parser->ngasmixes > 0) {
if (gasmix >= parser->ngasmixes) {
ERROR (abstract->context, "Invalid gas mix index.");
return DC_STATUS_DATAFORMAT;
}
if (gasmix != gasmix_previous) {
sample.gasmix = gasmix;
if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata);
gasmix_previous = gasmix;
}
}
offset += parser->samplesize;
nsamples++;
// Some extra data.
if (parser->model == ICONHDNET && (nsamples % 4) == 0) {
// Pressure (1/100 bar).
unsigned int pressure = array_uint16_le(data + offset);
if (gasmix < parser->ntanks) {
sample.pressure.tank = gasmix;
sample.pressure.value = pressure / 100.0;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
} else if (pressure != 0) {
WARNING (abstract->context, "Invalid tank with non-zero pressure.");
}
offset += 8;
}
}
}
return DC_STATUS_SUCCESS;
}