libdivecomputer/src/cochran_commander.c
John Van Ostrand 0220782aa8 Change communication parameter to work better with FTDI
The parameters used with the FTDI USB serial port drivers didn't work
well with directly with libftdi1. The new baud rate results in the same
effective baud rates for both.

The rbstream block size was reduced to help with the unreliability of
the libftdi communications.
2017-09-12 11:08:54 +02:00

1080 lines
34 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2014 John Van Ostrand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy, memcmp
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include "cochran_commander.h"
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "array.h"
#include "ringbuffer.h"
#include "rbstream.h"
#define C_ARRAY_SIZE(array) (sizeof (array) / sizeof *(array))
#define MAXRETRIES 2
#define COCHRAN_MODEL_COMMANDER_TM 0
#define COCHRAN_MODEL_COMMANDER_PRE21000 1
#define COCHRAN_MODEL_COMMANDER_AIR_NITROX 2
#define COCHRAN_MODEL_EMC_14 3
#define COCHRAN_MODEL_EMC_16 4
#define COCHRAN_MODEL_EMC_20 5
typedef enum cochran_endian_t {
ENDIAN_LE,
ENDIAN_BE,
ENDIAN_WORD_BE,
} cochran_endian_t;
typedef struct cochran_commander_model_t {
unsigned char id[3 + 1];
unsigned int model;
} cochran_commander_model_t;
typedef struct cochran_data_t {
unsigned char config[1024];
unsigned char *logbook;
unsigned short int dive_count;
int fp_dive_num;
int invalid_profile_dive_num;
unsigned int logbook_size;
} cochran_data_t;
typedef struct cochran_device_layout_t {
unsigned int model;
unsigned int address_bits;
cochran_endian_t endian;
unsigned int baudrate;
unsigned int rbstream_size;
// Config data.
unsigned int cf_dive_count;
unsigned int cf_last_log;
unsigned int cf_last_interdive;
unsigned int cf_serial_number;
// Logbook ringbuffer.
unsigned int rb_logbook_begin;
unsigned int rb_logbook_end;
unsigned int rb_logbook_entry_size;
unsigned int rb_logbook_entry_count;
// Profile ringbuffer.
unsigned int rb_profile_begin;
unsigned int rb_profile_end;
// pointers.
unsigned int pt_fingerprint;
unsigned int fingerprint_size;
unsigned int pt_profile_pre;
unsigned int pt_profile_begin;
unsigned int pt_profile_end;
unsigned int pt_dive_number;
} cochran_device_layout_t;
typedef struct cochran_commander_device_t {
dc_device_t base;
dc_serial_t *port;
const cochran_device_layout_t *layout;
unsigned char id[67];
unsigned char fingerprint[6];
} cochran_commander_device_t;
static dc_status_t cochran_commander_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size);
static dc_status_t cochran_commander_device_read (dc_device_t *device, unsigned int address, unsigned char data[], unsigned int size);
static dc_status_t cochran_commander_device_dump (dc_device_t *device, dc_buffer_t *data);
static dc_status_t cochran_commander_device_foreach (dc_device_t *device, dc_dive_callback_t callback, void *userdata);
static dc_status_t cochran_commander_device_close (dc_device_t *device);
static const dc_device_vtable_t cochran_commander_device_vtable = {
sizeof (cochran_commander_device_t),
DC_FAMILY_COCHRAN_COMMANDER,
cochran_commander_device_set_fingerprint,/* set_fingerprint */
cochran_commander_device_read, /* read */
NULL, /* write */
cochran_commander_device_dump, /* dump */
cochran_commander_device_foreach, /* foreach */
NULL, /* timesync */
cochran_commander_device_close /* close */
};
// Cochran Commander TM, pre-dates pre-21000 s/n
static const cochran_device_layout_t cochran_cmdr_tm_device_layout = {
COCHRAN_MODEL_COMMANDER_TM, // model
24, // address_bits
ENDIAN_WORD_BE, // endian
9600, // baudrate
4096, // rbstream_size
0x146, // cf_dive_count
0x158, // cf_last_log
0xffffff, // cf_last_interdive
0x15c, // cf_serial_number
0x010000, // rb_logbook_begin
0x01232b, // rb_logbook_end
90, // rb_logbook_entry_size
100, // rb_logbook_entry_count
0x01232b, // rb_profile_begin
0x018000, // rb_profile_end
15, // pt_fingerprint
4, // fingerprint_size
0, // pt_profile_pre
0, // pt_profile_begin
90, // pt_profile_end (Next begin pointer is the end)
20, // pt_dive_number
};
// Cochran Commander pre-21000 s/n
static const cochran_device_layout_t cochran_cmdr_1_device_layout = {
COCHRAN_MODEL_COMMANDER_PRE21000, // model
24, // address_bits
ENDIAN_WORD_BE, // endian
115200, // baudrate
32768, // rbstream_size
0x046, // cf_dive_count
0x6c, // cf_last_log
0x70, // cf_last_interdive
0x0AA, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
256, // rb_logbook_entry_size
512, // rb_logbook_entry_count
0x00020000, // rb_profile_begin
0x00100000, // rb_profile_end
12, // pt_fingerprint
4, // fingerprint_size
28, // pt_profile_pre
0, // pt_profile_begin
128, // pt_profile_end
68, // pt_dive_number
};
// Cochran Commander Nitrox
static const cochran_device_layout_t cochran_cmdr_device_layout = {
COCHRAN_MODEL_COMMANDER_AIR_NITROX, // model
24, // address_bits
ENDIAN_WORD_BE, // endian
115200, // baudrate
32768, // rbstream_size
0x046, // cf_dive_count
0x06C, // cf_last_log
0x070, // cf_last_interdive
0x0AA, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
256, // rb_logbook_entry_size
512, // rb_logbook_entry_count
0x00020000, // rb_profile_begin
0x00100000, // rb_profile_end
0, // pt_fingerprint
6, // fingerprint_size
30, // pt_profile_pre
6, // pt_profile_begin
128, // pt_profile_end
70, // pt_dive_number
};
// Cochran EMC-14
static const cochran_device_layout_t cochran_emc14_device_layout = {
COCHRAN_MODEL_EMC_14, // model
32, // address_bits
ENDIAN_LE, // endian
850000, // baudrate
32768, // rbstream_size
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
512, // rb_logbook_entry_size
256, // rb_logbook_entry_count
0x00022000, // rb_profile_begin
0x00200000, // rb_profile_end
0, // pt_fingerprint
6, // fingerprint_size
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
86, // pt_dive_number
};
// Cochran EMC-16
static const cochran_device_layout_t cochran_emc16_device_layout = {
COCHRAN_MODEL_EMC_16, // model
32, // address_bits
ENDIAN_LE, // endian
850000, // baudrate
32768, // rbstream_size
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00080000, // rb_logbook_end
512, // rb_logbook_entry_size
1024, // rb_logbook_entry_count
0x00094000, // rb_profile_begin
0x00800000, // rb_profile_end
0, // pt_fingerprint
6, // fingerprint_size
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
86, // pt_dive_number
};
// Cochran EMC-20
static const cochran_device_layout_t cochran_emc20_device_layout = {
COCHRAN_MODEL_EMC_20, // model
32, // address_bits
ENDIAN_LE, // endian
850000, // baudrate
32768, // rbstream_size
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00080000, // rb_logbook_end
512, // rb_logbook_entry_size
1024, // rb_logbook_entry_count
0x00094000, // rb_profile_begin
0x01000000, // rb_profile_end
0, // pt_fingerprint
6, // fingerprint_size
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
86, // pt_dive_number
};
// Determine model descriptor number from model string
static unsigned int
cochran_commander_get_model (cochran_commander_device_t *device)
{
const cochran_commander_model_t models[] = {
{"\x0a""12", COCHRAN_MODEL_COMMANDER_TM},
{"\x11""21", COCHRAN_MODEL_COMMANDER_PRE21000},
{"\x11""22", COCHRAN_MODEL_COMMANDER_AIR_NITROX},
{"730", COCHRAN_MODEL_EMC_14},
{"731", COCHRAN_MODEL_EMC_14},
{"A30", COCHRAN_MODEL_EMC_16},
{"A31", COCHRAN_MODEL_EMC_16},
{"230", COCHRAN_MODEL_EMC_20},
{"231", COCHRAN_MODEL_EMC_20},
{"\x40""30", COCHRAN_MODEL_EMC_20},
};
unsigned int model = 0xFFFFFFFF;
for (unsigned int i = 0; i < C_ARRAY_SIZE(models); ++i) {
if (memcmp (device->id + 0x3D, models[i].id, sizeof(models[i].id) - 1) == 0) {
model = models[i].model;
break;
}
}
return model;
}
static dc_status_t
cochran_commander_serial_setup (cochran_commander_device_t *device)
{
dc_status_t status = DC_STATUS_SUCCESS;
// Set the serial communication protocol (9600 8N2, no FC).
status = dc_serial_configure (device->port, 9600, 8, DC_PARITY_NONE, DC_STOPBITS_TWO, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to set the terminal attributes.");
return status;
}
// Set the timeout for receiving data (5000 ms).
status = dc_serial_set_timeout (device->port, 5000);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to set the timeout.");
return status;
}
// Wake up DC and trigger heartbeat
dc_serial_set_break(device->port, 1);
dc_serial_sleep(device->port, 16);
dc_serial_set_break(device->port, 0);
// Clear old heartbeats
dc_serial_purge (device->port, DC_DIRECTION_ALL);
// Wait for heartbeat byte before send
unsigned char answer = 0;
status = dc_serial_read(device->port, &answer, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to receive device heartbeat.");
return status;
}
if (answer != 0xAA) {
ERROR (device->base.context, "Received bad hearbeat byte (%02x).", answer);
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_packet (cochran_commander_device_t *device, dc_event_progress_t *progress,
const unsigned char command[], unsigned int csize,
unsigned char answer[], unsigned int asize, int high_speed)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t status = DC_STATUS_SUCCESS;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Send the command to the device, one byte at a time
// If sent all at once the command is ignored. It's like the DC
// has no buffering.
for (unsigned int i = 0; i < csize; i++) {
// Give the DC time to read the character.
if (i) dc_serial_sleep(device->port, 16); // 16 ms
status = dc_serial_write(device->port, command + i, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
}
if (high_speed && device->layout->baudrate != 9600) {
// Give the DC time to process the command.
dc_serial_sleep(device->port, 45);
// Rates are odd, like 850400 for the EMC, 115200 for commander
status = dc_serial_configure(device->port, device->layout->baudrate, 8, DC_PARITY_NONE, DC_STOPBITS_TWO, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to set the high baud rate.");
return status;
}
}
// Receive the answer from the device.
// Use 1024 byte "packets" so we can display progress.
unsigned int nbytes = 0;
while (nbytes < asize) {
unsigned int len = asize - nbytes;
if (len > 1024)
len = 1024;
status = dc_serial_read (device->port, answer + nbytes, len, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive data.");
return status;
}
nbytes += len;
if (progress) {
progress->current += len;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read_id (cochran_commander_device_t *device, unsigned char id[], unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned char command[6] = {0x05, 0x9D, 0xFF, 0x00, 0x43, 0x00};
rc = cochran_commander_packet(device, NULL, command, sizeof(command), id, size, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
if (memcmp(id, "(C)", 3) != 0) {
// It's a Commander, read a different location
command[1] = 0xBD;
command[2] = 0x7F;
rc = cochran_commander_packet(device, NULL, command, sizeof(command), id, size, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read_config (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned char data[], unsigned int size)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t rc = DC_STATUS_SUCCESS;
if ((size % 512) != 0)
return DC_STATUS_INVALIDARGS;
// Read two 512 byte blocks into one 1024 byte buffer
unsigned int pages = size / 512;
for (unsigned int i = 0; i < pages; i++) {
unsigned char command[2] = {0x96, i};
unsigned int command_size = sizeof(command);
if (device->layout->model == COCHRAN_MODEL_COMMANDER_TM)
command_size = 1;
rc = cochran_commander_packet(device, progress, command, command_size, data + i * 512, 512, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
dc_event_vendor_t vendor;
vendor.data = data + i * 512;
vendor.size = 512;
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned int address, unsigned char data[], unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
// Build the command
unsigned char command[10];
unsigned char command_size;
switch (device->layout->address_bits) {
case 32:
// EMC uses 32 bit addressing
command[0] = 0x15;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (address >> 24) & 0xff;
command[5] = (size ) & 0xff;
command[6] = (size >> 8 ) & 0xff;
command[7] = (size >> 16 ) & 0xff;
command[8] = (size >> 24 ) & 0xff;
command[9] = 0x05;
command_size = 10;
break;
case 24:
// Commander uses 24 byte addressing
if (device->layout->baudrate == 9600) {
// This read command will return 32K bytes if asked to read
// 0 bytes. So we can allow a size of up to 0x10000 but if
// the user asks for 0 bytes we should just return success
// otherwise we'll end end up running past the buffer.
if (size > 0x10000)
return DC_STATUS_INVALIDARGS;
if (size == 0)
return DC_STATUS_SUCCESS;
// Older commander, use low-speed read command
command[0] = 0x05;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (size ) & 0xff;
command[5] = (size >> 8 ) & 0xff;
command_size = 6;
} else {
// Newer commander with high-speed read command
command[0] = 0x15;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (size ) & 0xff;
command[5] = (size >> 8 ) & 0xff;
command[6] = (size >> 16 ) & 0xff;
command[7] = 0x04;
command_size = 8;
}
break;
default:
return DC_STATUS_UNSUPPORTED;
}
dc_serial_sleep(device->port, 550);
// set back to 9600 baud
rc = cochran_commander_serial_setup(device);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read data at high speed
rc = cochran_commander_packet (device, progress, command, command_size, data, size, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
static unsigned int
cochran_commander_read_retry (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned int address, unsigned char data[], unsigned int size)
{
// Save the state of the progress events.
unsigned int saved = 0;
if (progress) {
saved = progress->current;
}
unsigned int nretries = 0;
dc_status_t rc = DC_STATUS_SUCCESS;
while ((rc = cochran_commander_read (device, progress, address, data, size)) != DC_STATUS_SUCCESS) {
// Automatically discard a corrupted packet,
// and request a new one.
if (rc != DC_STATUS_PROTOCOL && rc != DC_STATUS_TIMEOUT)
return rc;
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
return rc;
// Restore the state of the progress events.
if (progress) {
progress->current = saved;
}
}
return rc;
}
/*
* For corrupt dives the end-of-samples pointer is 0xFFFFFFFF
* search for a reasonable size, e.g. using next dive start sample
* or end-of-samples to limit searching for recoverable samples
*/
static unsigned int
cochran_commander_guess_sample_end_address(cochran_commander_device_t *device, cochran_data_t *data, unsigned int log_num)
{
const unsigned char *log_entry = data->logbook + device->layout->rb_logbook_entry_size * log_num;
if (log_num == data->dive_count)
// Return next usable address from config page
return array_uint32_le(data->config + device->layout->rb_profile_end);
// Next log's start address
return array_uint32_le(log_entry + device->layout->rb_logbook_entry_size + device->layout->pt_profile_begin);
}
static unsigned int
cochran_commander_profile_size(cochran_commander_device_t *device, cochran_data_t *data, int dive_num, unsigned int sample_start_address, unsigned int sample_end_address)
{
// Validate addresses
if (sample_start_address < device->layout->rb_profile_begin ||
sample_start_address > device->layout->rb_profile_end ||
sample_end_address < device->layout->rb_profile_begin ||
(sample_end_address > device->layout->rb_profile_end &&
sample_end_address != 0xFFFFFFFF)) {
return 0;
}
if (sample_end_address == 0xFFFFFFFF)
// Corrupt dive, guess the end address
sample_end_address = cochran_commander_guess_sample_end_address(device, data, dive_num);
return ringbuffer_distance(sample_start_address, sample_end_address, 0, device->layout->rb_profile_begin, device->layout->rb_profile_end);
}
/*
* Do several things. Find the log that matches the fingerprint,
* calculate the total read size for progress indicator,
* Determine the most recent dive without profile data.
*/
static unsigned int
cochran_commander_find_fingerprint(cochran_commander_device_t *device, cochran_data_t *data)
{
unsigned int base = device->layout->rb_logbook_begin;
// We track profile ringbuffer usage to determine which dives have profile data
int profile_capacity_remaining = device->layout->rb_profile_end - device->layout->rb_profile_begin;
int dive_count = -1;
data->fp_dive_num = -1;
// Start at end of log
if (data->dive_count < device->layout->rb_logbook_entry_count)
dive_count = data->dive_count;
else
dive_count = device->layout->rb_logbook_entry_count;
dive_count--;
unsigned int sample_read_size = 0;
data->invalid_profile_dive_num = -1;
// Remove the pre-dive events that occur after the last dive
unsigned int rb_head_ptr = 0;
if (device->layout->model == COCHRAN_MODEL_COMMANDER_TM)
// TM uses SRAM and does not need to erase pages
rb_head_ptr = base + array_uint16_be(data->config + device->layout->cf_last_log);
else if (device->layout->endian == ENDIAN_WORD_BE)
rb_head_ptr = base + (array_uint32_word_be(data->config + device->layout->cf_last_log) & 0xfffff000) + 0x2000;
else
rb_head_ptr = base + (array_uint32_le(data->config + device->layout->cf_last_log) & 0xfffff000) + 0x2000;
unsigned int head_dive = 0, tail_dive = 0;
if (data->dive_count <= device->layout->rb_logbook_entry_count) {
head_dive = data->dive_count;
tail_dive = 0;
} else {
// Log wrapped
tail_dive = data->dive_count % device->layout->rb_logbook_entry_count;
head_dive = tail_dive;
}
unsigned int last_profile_idx = (device->layout->rb_logbook_entry_count + head_dive - 1) % device->layout->rb_logbook_entry_count;
unsigned int last_profile_end = 0;
if (device->layout->model == COCHRAN_MODEL_COMMANDER_TM)
// There is no end pointer in this model and no inter-dive
// events. We could use profile_begin from the next dive but
// since this is the last dive, we'll use rb_head_ptr
last_profile_end = rb_head_ptr;
else
last_profile_end = base + array_uint32_le(data->logbook + last_profile_idx * device->layout->rb_logbook_entry_size + device->layout->pt_profile_end);
unsigned int last_profile_pre = 0xFFFFFFFF;
if (device->layout->endian == ENDIAN_WORD_BE)
last_profile_pre = base + array_uint32_word_be(data->config + device->layout->cf_last_log);
else
last_profile_pre = base + array_uint32_le(data->config + device->layout->cf_last_log);
if (rb_head_ptr > last_profile_end)
profile_capacity_remaining -= rb_head_ptr - last_profile_end;
// Loop through dives to find FP, Accumulate profile data size,
// and find the last dive with invalid profile
for (unsigned int i = 0; i <= dive_count; ++i) {
unsigned int idx = (device->layout->rb_logbook_entry_count + head_dive - (i + 1)) % device->layout->rb_logbook_entry_count;
unsigned char *log_entry = data->logbook + idx * device->layout->rb_logbook_entry_size;
// We're done if we find the fingerprint
if (!memcmp(device->fingerprint, log_entry + device->layout->pt_fingerprint, device->layout->fingerprint_size)) {
data->fp_dive_num = idx;
break;
}
unsigned int profile_pre = 0;
if (device->layout->model == COCHRAN_MODEL_COMMANDER_TM)
profile_pre = base + array_uint16_le(log_entry + device->layout->pt_profile_pre);
else
profile_pre = base + array_uint32_le(log_entry + device->layout->pt_profile_pre);
unsigned int sample_size = cochran_commander_profile_size(device, data, idx, profile_pre, last_profile_pre);
last_profile_pre = profile_pre;
// Determine if sample exists
if (profile_capacity_remaining > 0) {
// Subtract this dive's profile size including post-dive events
profile_capacity_remaining -= sample_size;
if (profile_capacity_remaining < 0) {
// Save the last dive that is missing profile data
data->invalid_profile_dive_num = idx;
}
// Accumulate read size for progress bar
sample_read_size += sample_size;
}
}
return sample_read_size;
}
dc_status_t
cochran_commander_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
cochran_commander_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (cochran_commander_device_t *) dc_device_allocate (context, &cochran_commander_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->port = NULL;
cochran_commander_device_set_fingerprint((dc_device_t *) device, NULL, 0);
// Open the device.
status = dc_serial_open (&device->port, device->base.context, name);
if (status != DC_STATUS_SUCCESS) {
ERROR (device->base.context, "Failed to open the serial port.");
goto error_free;
}
status = cochran_commander_serial_setup(device);
if (status != DC_STATUS_SUCCESS) {
goto error_close;
}
// Read ID from the device
status = cochran_commander_read_id (device, device->id, sizeof(device->id));
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Device not responding.");
goto error_close;
}
unsigned int model = cochran_commander_get_model(device);
switch (model) {
case COCHRAN_MODEL_COMMANDER_TM:
device->layout = &cochran_cmdr_tm_device_layout;
break;
case COCHRAN_MODEL_COMMANDER_PRE21000:
device->layout = &cochran_cmdr_1_device_layout;
break;
case COCHRAN_MODEL_COMMANDER_AIR_NITROX:
device->layout = &cochran_cmdr_device_layout;
break;
case COCHRAN_MODEL_EMC_14:
device->layout = &cochran_emc14_device_layout;
break;
case COCHRAN_MODEL_EMC_16:
device->layout = &cochran_emc16_device_layout;
break;
case COCHRAN_MODEL_EMC_20:
device->layout = &cochran_emc20_device_layout;
break;
default:
ERROR (context, "Unknown model");
status = DC_STATUS_UNSUPPORTED;
goto error_close;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
error_close:
dc_serial_close (device->port);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
cochran_commander_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Close the device.
rc = dc_serial_close (device->port);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
static dc_status_t
cochran_commander_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
if (size && size != device->layout->fingerprint_size)
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, device->layout->fingerprint_size);
else
memset (device->fingerprint, 0xFF, sizeof(device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
return cochran_commander_read_retry(device, NULL, address, data, size);
}
static dc_status_t
cochran_commander_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned char config[1024];
unsigned int config_size = sizeof(config);
unsigned int size = device->layout->rb_profile_end - device->layout->rb_logbook_begin;
// Make sure buffer is good.
if (!dc_buffer_clear(buffer)) {
ERROR (abstract->context, "Uninitialized buffer.");
return DC_STATUS_INVALIDARGS;
}
// Reserve space
if (!dc_buffer_resize(buffer, size)) {
ERROR(abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
if (device->layout->model == COCHRAN_MODEL_COMMANDER_TM)
config_size = 512;
// Determine size for progress
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = config_size + size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit ID block
dc_event_vendor_t vendor;
vendor.data = device->id;
vendor.size = sizeof (device->id);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
rc = cochran_commander_read_config (device, &progress, config, config_size);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the sample data, logbook and sample data are contiguous
rc = cochran_commander_read_retry (device, &progress, device->layout->rb_logbook_begin, dc_buffer_get_data(buffer), size);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the sample data.");
return rc;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
const cochran_device_layout_t *layout = device->layout;
dc_status_t status = DC_STATUS_SUCCESS;
dc_rbstream_t *rbstream = NULL;
cochran_data_t data;
data.logbook = NULL;
// Calculate max data sizes
unsigned int max_config = sizeof(data.config);
unsigned int max_logbook = layout->rb_logbook_end - layout->rb_logbook_begin;
unsigned int max_sample = layout->rb_profile_end - layout->rb_profile_begin;
unsigned int base = device->layout->rb_logbook_begin;
if (device->layout->model == COCHRAN_MODEL_COMMANDER_TM)
max_config = 512;
// setup progress indication
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = max_config + max_logbook + max_sample;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit ID block
dc_event_vendor_t vendor;
vendor.data = device->id;
vendor.size = sizeof (device->id);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
// Read config
dc_status_t rc = DC_STATUS_SUCCESS;
rc = cochran_commander_read_config(device, &progress, data.config, max_config);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Determine size of dive list to read.
if (layout->endian == ENDIAN_LE)
data.dive_count = array_uint16_le (data.config + layout->cf_dive_count);
else
data.dive_count = array_uint16_be (data.config + layout->cf_dive_count);
if (data.dive_count == 0) {
// No dives to read
WARNING(abstract->context, "This dive computer has no recorded dives.");
return DC_STATUS_SUCCESS;
}
if (data.dive_count > layout->rb_logbook_entry_count) {
data.logbook_size = layout->rb_logbook_entry_count * layout->rb_logbook_entry_size;
} else {
data.logbook_size = data.dive_count * layout->rb_logbook_entry_size;
}
// Update progress indicator with new maximum
progress.maximum -= max_logbook - data.logbook_size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Allocate space for log book.
data.logbook = (unsigned char *) malloc(data.logbook_size);
if (data.logbook == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Request log book
rc = cochran_commander_read_retry(device, &progress, layout->rb_logbook_begin, data.logbook, data.logbook_size);
if (rc != DC_STATUS_SUCCESS) {
status = rc;
goto error;
}
// Locate fingerprint, recent dive with invalid profile and calc read size
unsigned int profile_read_size = cochran_commander_find_fingerprint(device, &data);
// Update progress indicator with new maximum
progress.maximum -= (max_sample - profile_read_size);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = layout->model;
devinfo.firmware = 0; // unknown
if (layout->endian == ENDIAN_WORD_BE)
devinfo.serial = array_uint32_word_be(data.config + layout->cf_serial_number);
else
devinfo.serial = array_uint32_le(data.config + layout->cf_serial_number);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
unsigned int head_dive = 0, tail_dive = 0, dive_count = 0;
if (data.dive_count <= layout->rb_logbook_entry_count) {
head_dive = data.dive_count;
tail_dive = 0;
} else {
// Log wrapped
tail_dive = data.dive_count % layout->rb_logbook_entry_count;
head_dive = tail_dive;
}
// Change tail to dive following the fingerprint dive.
if (data.fp_dive_num > -1)
tail_dive = (data.fp_dive_num + 1) % layout->rb_logbook_entry_count;
// Number of dives to read
dive_count = (layout->rb_logbook_entry_count + head_dive - tail_dive) % layout->rb_logbook_entry_count;
unsigned int last_start_address = 0;
if (layout->endian == ENDIAN_WORD_BE)
last_start_address = base + array_uint32_word_be(data.config + layout->cf_last_log );
else
last_start_address = base + array_uint32_le(data.config + layout->cf_last_log );
// Create the ringbuffer stream.
status = dc_rbstream_new (&rbstream, abstract, 1, layout->rbstream_size, layout->rb_profile_begin, layout->rb_profile_end, last_start_address);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to create the ringbuffer stream.");
goto error;
}
int invalid_profile_flag = 0;
// Loop through each dive
for (unsigned int i = 0; i < dive_count; ++i) {
unsigned int idx = (layout->rb_logbook_entry_count + head_dive - (i + 1)) % layout->rb_logbook_entry_count;
unsigned char *log_entry = data.logbook + idx * layout->rb_logbook_entry_size;
unsigned int sample_start_address = 0;
unsigned int sample_end_address = 0;
if (layout->model == COCHRAN_MODEL_COMMANDER_TM) {
sample_start_address = base + array_uint16_le (log_entry + layout->pt_profile_begin);
sample_end_address = last_start_address;
// Commander TM has SRAM which seems to randomize when they lose power for too long
// Check for bad entries.
if (sample_start_address < layout->rb_profile_begin || sample_start_address > layout->rb_profile_end ||
sample_end_address < layout->rb_profile_begin || sample_end_address > layout->rb_profile_end ||
array_uint16_le(log_entry + layout->pt_dive_number) % layout->rb_logbook_entry_count != idx) {
ERROR(abstract->context, "Corrupt dive (%d).", idx);
continue;
}
} else {
sample_start_address = base + array_uint32_le (log_entry + layout->pt_profile_begin);
sample_end_address = base + array_uint32_le (log_entry + layout->pt_profile_end);
}
int sample_size = 0, pre_size = 0;
// Determine if profile exists
if (idx == data.invalid_profile_dive_num)
invalid_profile_flag = 1;
if (!invalid_profile_flag) {
sample_size = cochran_commander_profile_size(device, &data, idx, sample_start_address, sample_end_address);
pre_size = cochran_commander_profile_size(device, &data, idx, sample_end_address, last_start_address);
last_start_address = sample_start_address;
}
// Build dive blob
unsigned int dive_size = layout->rb_logbook_entry_size + sample_size;
unsigned char *dive = (unsigned char *) malloc(dive_size + pre_size);
if (dive == NULL) {
status = DC_STATUS_NOMEMORY;
goto error;
}
memcpy(dive, log_entry, layout->rb_logbook_entry_size); // log
// Read profile data
if (sample_size) {
rc = dc_rbstream_read(rbstream, &progress, dive + layout->rb_logbook_entry_size, sample_size + pre_size);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the sample data.");
status = rc;
free(dive);
goto error;
}
}
if (callback && !callback (dive, dive_size, dive + layout->pt_fingerprint, layout->fingerprint_size, userdata)) {
free(dive);
break;
}
free(dive);
}
error:
dc_rbstream_free(rbstream);
free(data.logbook);
return status;
}