libdivecomputer/src/uwatec_aladin.c
Jef Driesen f42df2d846 Remove the infinite timeout
When an Uwatec Aladin is connected, but the transfer hasn't been started
yet, we receive a continuous stream of zero bytes. Approximately every
7-8ms a new zero byte is received. But when the dive computer is
(temporary) disconnected, the stream of zero bytes also ends.

The consequence is that due to the use of blocking read call with an
infinite timeout, the application becomes unresponsive, without any
chance to abort the communication. This can eaily be avoided by using a
timeout instead. Receiving the main 2048 byte packet takes about 1050ms.
Thus a 3000ms timeout should be long enough to not cause the main data
transfer to timeout, but still short enough to cancel reasonable fast.
2021-02-12 13:54:40 +01:00

373 lines
12 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h> // malloc, free
#include <memory.h> // memcpy
#include "uwatec_aladin.h"
#include "context-private.h"
#include "device-private.h"
#include "ringbuffer.h"
#include "checksum.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &uwatec_aladin_device_vtable)
#define SZ_MEMORY 2048
#define RB_PROFILE_BEGIN 0x000
#define RB_PROFILE_END 0x600
#define RB_PROFILE_NEXT(a) ringbuffer_increment (a, 1, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define RB_PROFILE_DISTANCE(a,b) ringbuffer_distance (a, b, 0, RB_PROFILE_BEGIN, RB_PROFILE_END)
#define HEADER 4
typedef struct uwatec_aladin_device_t {
dc_device_t base;
dc_iostream_t *iostream;
unsigned int timestamp;
unsigned int devtime;
dc_ticks_t systime;
} uwatec_aladin_device_t ;
static dc_status_t uwatec_aladin_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t uwatec_aladin_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t uwatec_aladin_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static const dc_device_vtable_t uwatec_aladin_device_vtable = {
sizeof(uwatec_aladin_device_t),
DC_FAMILY_UWATEC_ALADIN,
uwatec_aladin_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
uwatec_aladin_device_dump, /* dump */
uwatec_aladin_device_foreach, /* foreach */
NULL, /* timesync */
NULL /* close */
};
static dc_status_t
uwatec_aladin_extract_dives (dc_device_t *device, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata);
dc_status_t
uwatec_aladin_device_open (dc_device_t **out, dc_context_t *context, dc_iostream_t *iostream)
{
dc_status_t status = DC_STATUS_SUCCESS;
uwatec_aladin_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (uwatec_aladin_device_t *) dc_device_allocate (context, &uwatec_aladin_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->iostream = iostream;
device->timestamp = 0;
device->systime = (dc_ticks_t) -1;
device->devtime = 0;
// Set the serial communication protocol (19200 8N1).
status = dc_iostream_configure (device->iostream, 19200, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_free;
}
// Set the timeout for receiving data (3000ms).
status = dc_iostream_set_timeout (device->iostream, 3000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_free;
}
// Set the DTR line.
status = dc_iostream_set_dtr (device->iostream, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the DTR line.");
goto error_free;
}
// Clear the RTS line.
status = dc_iostream_set_rts (device->iostream, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to clear the RTS line.");
goto error_free;
}
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
uwatec_aladin_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
uwatec_aladin_device_t *device = (uwatec_aladin_device_t*) abstract;
if (size && size != 4)
return DC_STATUS_INVALIDARGS;
if (size)
device->timestamp = array_uint32_le (data);
else
device->timestamp = 0;
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_aladin_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
dc_status_t status = DC_STATUS_SUCCESS;
uwatec_aladin_device_t *device = (uwatec_aladin_device_t*) abstract;
// Pre-allocate the required amount of memory.
if (!dc_buffer_reserve (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_MEMORY + 2;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
unsigned char answer[SZ_MEMORY + 2] = {0};
// Receive the header of the package.
unsigned int i = 0;
while (i < 4) {
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
status = dc_iostream_read (device->iostream, answer + i, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
if (status != DC_STATUS_TIMEOUT)
return status;
}
const unsigned char expected = i < 3 ? 0x55 : 0x00;
if (status != DC_STATUS_SUCCESS || answer[i] != expected) {
device_event_emit (abstract, DC_EVENT_WAITING, NULL);
i = 0;
} else {
i++;
}
}
// Fetch the current system time.
dc_ticks_t now = dc_datetime_now ();
// Update and emit a progress event.
progress.current += 4;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Receive the remaining part of the package.
status = dc_iostream_read (device->iostream, answer + 4, sizeof (answer) - 4, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Unexpected EOF in answer.");
return status;
}
// Update and emit a progress event.
progress.current += sizeof (answer) - 4;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Reverse the bit order.
array_reverse_bits (answer, sizeof (answer));
// Verify the checksum of the package.
unsigned short crc = array_uint16_le (answer + SZ_MEMORY);
unsigned short ccrc = checksum_add_uint16 (answer, SZ_MEMORY, 0x0000);
if (ccrc != crc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
// Store the clock calibration values.
device->systime = now;
device->devtime = array_uint32_be (answer + HEADER + 0x7f8);
// Emit a clock event.
dc_event_clock_t clock;
clock.systime = device->systime;
clock.devtime = device->devtime;
device_event_emit (abstract, DC_EVENT_CLOCK, &clock);
dc_buffer_append (buffer, answer, SZ_MEMORY);
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_aladin_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = uwatec_aladin_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
// Emit a device info event.
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = data[HEADER + 0x7bc];
devinfo.firmware = 0;
devinfo.serial = array_uint24_be (data + HEADER + 0x7ed);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = uwatec_aladin_extract_dives (abstract,
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
static dc_status_t
uwatec_aladin_extract_dives (dc_device_t *abstract, const unsigned char* data, unsigned int size, dc_dive_callback_t callback, void *userdata)
{
uwatec_aladin_device_t *device = (uwatec_aladin_device_t*) abstract;
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
// The logbook ring buffer can store up to 37 dives. But
// if the total number of dives is less, not all logbook
// entries contain valid data.
unsigned int ndives = array_uint16_be (data + HEADER + 0x7f2);
if (ndives > 37)
ndives = 37;
// Get the index to the newest logbook entry. This value is
// normally in the range from 1 to 37 and is converted to
// a zero based index, taking care not to underflow.
unsigned int eol = (data[HEADER + 0x7f4] + 37 - 1) % 37;
// Get the end of the profile ring buffer. This value points
// to the last byte of the last profile and is incremented
// one byte to point immediately after the last profile.
unsigned int eop = RB_PROFILE_NEXT (data[HEADER + 0x7f6] +
(((data[HEADER + 0x7f7] & 0x0F) >> 1) << 8));
// Start scanning the profile ringbuffer.
int profiles = 1;
// Both ring buffers are traversed backwards to retrieve the most recent
// dives first. This allows you to download only the new dives and avoids
// having to rely on the number of profiles in the ring buffer (which
// is buggy according to the documentation). During the traversal, the
// previous pointer does always point to the end of the dive data and
// we move the current pointer backwards until a start marker is found.
unsigned int previous = eop;
unsigned int current = eop;
for (unsigned int i = 0; i < ndives; ++i) {
// Memory buffer to store one dive.
unsigned char buffer[18 + RB_PROFILE_END - RB_PROFILE_BEGIN] = {0};
// Get the offset to the current logbook entry.
unsigned int offset = ((eol + 37 - i) % 37) * 12 + RB_PROFILE_END;
// Copy the serial number, type and logbook data
// to the buffer and set the profile length to zero.
memcpy (buffer + 0, data + HEADER + 0x07ed, 3);
memcpy (buffer + 3, data + HEADER + 0x07bc, 1);
memcpy (buffer + 4, data + HEADER + offset, 12);
memset (buffer + 16, 0, 2);
// Convert the timestamp from the Aladin (big endian)
// to the Memomouse format (little endian).
array_reverse_bytes (buffer + 11, 4);
unsigned int len = 0;
if (profiles) {
// Search the profile ringbuffer for a start marker.
do {
if (current == RB_PROFILE_BEGIN)
current = RB_PROFILE_END;
current--;
if (data[HEADER + current] == 0xFF) {
len = RB_PROFILE_DISTANCE (current, previous);
previous = current;
break;
}
} while (current != eop);
if (len >= 1) {
// Skip the start marker.
len--;
unsigned int begin = RB_PROFILE_NEXT (current);
// Set the profile length.
buffer[16] = (len ) & 0xFF;
buffer[17] = (len >> 8) & 0xFF;
// Copy the profile data.
if (begin + len > RB_PROFILE_END) {
unsigned int a = RB_PROFILE_END - begin;
unsigned int b = (begin + len) - RB_PROFILE_END;
memcpy (buffer + 18 + 0, data + HEADER + begin, a);
memcpy (buffer + 18 + a, data + HEADER, b);
} else {
memcpy (buffer + 18, data + HEADER + begin, len);
}
}
// Since the size of the profile ringbuffer is limited,
// not all logbook entries will have profile data. Thus,
// once the end of the profile ringbuffer is reached,
// there is no need to keep scanning the ringbuffer.
if (current == eop)
profiles = 0;
}
// Automatically abort when a dive is older than the provided timestamp.
unsigned int timestamp = array_uint32_le (buffer + 11);
if (device && timestamp <= device->timestamp)
return DC_STATUS_SUCCESS;
if (callback && !callback (buffer, len + 18, buffer + 11, 4, userdata))
return DC_STATUS_SUCCESS;
}
return DC_STATUS_SUCCESS;
}