The term "backend" can be confusing because it can refer to both the virtual function table and the device/parser backends. The use of the term "vtable" avoids this.
640 lines
18 KiB
C
640 lines
18 KiB
C
/*
|
|
* libdivecomputer
|
|
*
|
|
* Copyright (C) 2012 Jef Driesen
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <string.h> // memcmp, memcpy
|
|
#include <stdlib.h> // malloc, free
|
|
|
|
#include <libdivecomputer/shearwater_predator.h>
|
|
|
|
#include "context-private.h"
|
|
#include "device-private.h"
|
|
#include "serial.h"
|
|
#include "array.h"
|
|
|
|
#define PREDATOR 2
|
|
#define PETREL 3
|
|
|
|
#define SZ_PACKET 254
|
|
#define SZ_BLOCK 0x80
|
|
#define SZ_MEMORY 0x20080
|
|
|
|
#define RB_PROFILE_BEGIN 0
|
|
#define RB_PROFILE_END 0x1F600
|
|
|
|
// SLIP special character codes
|
|
#define END 0xC0
|
|
#define ESC 0xDB
|
|
#define ESC_END 0xDC
|
|
#define ESC_ESC 0xDD
|
|
|
|
#define EXITCODE(n) ((n) < 0 ? (n) : 0)
|
|
|
|
typedef struct shearwater_predator_device_t {
|
|
dc_device_t base;
|
|
serial_t *port;
|
|
unsigned char fingerprint[4];
|
|
} shearwater_predator_device_t;
|
|
|
|
static dc_status_t shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
|
|
static dc_status_t shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
|
|
static dc_status_t shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
|
|
static dc_status_t shearwater_predator_device_close (dc_device_t *abstract);
|
|
|
|
static const dc_device_vtable_t shearwater_predator_device_vtable = {
|
|
DC_FAMILY_SHEARWATER_PREDATOR,
|
|
shearwater_predator_device_set_fingerprint, /* set_fingerprint */
|
|
NULL, /* read */
|
|
NULL, /* write */
|
|
shearwater_predator_device_dump, /* dump */
|
|
shearwater_predator_device_foreach, /* foreach */
|
|
shearwater_predator_device_close /* close */
|
|
};
|
|
|
|
|
|
static int
|
|
device_is_shearwater_predator (dc_device_t *abstract)
|
|
{
|
|
if (abstract == NULL)
|
|
return 0;
|
|
|
|
return abstract->vtable == &shearwater_predator_device_vtable;
|
|
}
|
|
|
|
|
|
static int
|
|
shearwater_predator_slip_write (shearwater_predator_device_t *device, const unsigned char data[], unsigned int size)
|
|
{
|
|
int n = 0;
|
|
const unsigned char end[] = {END};
|
|
const unsigned char esc_end[] = {ESC, ESC_END};
|
|
const unsigned char esc_esc[] = {ESC, ESC_ESC};
|
|
|
|
#if 0
|
|
// Send an initial END character to flush out any data that may have
|
|
// accumulated in the receiver due to line noise.
|
|
n = serial_write (device->port, end, sizeof (end));
|
|
if (n != sizeof (end)) {
|
|
return EXITCODE(n);
|
|
}
|
|
#endif
|
|
|
|
for (unsigned int i = 0; i < size; ++i) {
|
|
const unsigned char *seq = NULL;
|
|
unsigned int len = 0;
|
|
switch (data[i]) {
|
|
case END:
|
|
// Escape the END character.
|
|
seq = esc_end;
|
|
len = sizeof (esc_end);
|
|
break;
|
|
case ESC:
|
|
// Escape the ESC character.
|
|
seq = esc_esc;
|
|
len = sizeof (esc_esc);
|
|
break;
|
|
default:
|
|
// Normal character.
|
|
seq = data + i;
|
|
len = 1;
|
|
break;
|
|
}
|
|
|
|
n = serial_write (device->port, seq, len);
|
|
if (n != len) {
|
|
return EXITCODE(n);
|
|
}
|
|
}
|
|
|
|
// Send the END character to indicate the end of the packet.
|
|
n = serial_write (device->port, end, sizeof (end));
|
|
if (n != sizeof (end)) {
|
|
return EXITCODE(n);
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
|
|
static int
|
|
shearwater_predator_slip_read (shearwater_predator_device_t *device, unsigned char data[], unsigned int size)
|
|
{
|
|
unsigned int received = 0;
|
|
|
|
// Read bytes until a complete packet has been received. If the
|
|
// buffer runs out of space, bytes are dropped. The caller can
|
|
// detect this condition because the return value will be larger
|
|
// than the supplied buffer size.
|
|
while (1) {
|
|
unsigned char c = 0;
|
|
int n = 0;
|
|
|
|
// Get a single character to process.
|
|
n = serial_read (device->port, &c, 1);
|
|
if (n != 1) {
|
|
return EXITCODE(n);
|
|
}
|
|
|
|
switch (c) {
|
|
case END:
|
|
// If it's an END character then we're done.
|
|
// As a minor optimization, empty packets are ignored. This
|
|
// is to avoid bothering the upper layers with all the empty
|
|
// packets generated by the duplicate END characters which
|
|
// are sent to try to detect line noise.
|
|
if (received)
|
|
return received;
|
|
else
|
|
break;
|
|
case ESC:
|
|
// If it's an ESC character, get another character and then
|
|
// figure out what to store in the packet based on that.
|
|
n = serial_read (device->port, &c, 1);
|
|
if (n != 1) {
|
|
return EXITCODE(n);
|
|
}
|
|
|
|
// If it's not one of the two escaped characters, then we
|
|
// have a protocol violation. The best bet seems to be to
|
|
// leave the byte alone and just stuff it into the packet.
|
|
switch (c) {
|
|
case ESC_END:
|
|
c = END;
|
|
break;
|
|
case ESC_ESC:
|
|
c = ESC;
|
|
break;
|
|
}
|
|
// Fall-through!
|
|
default:
|
|
if (received < size)
|
|
data[received] = c;
|
|
received++;
|
|
}
|
|
}
|
|
|
|
return received;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_transfer (shearwater_predator_device_t *device, const unsigned char input[], unsigned int isize, unsigned char output[], unsigned int osize, unsigned int *actual)
|
|
{
|
|
dc_device_t *abstract = (dc_device_t *) device;
|
|
unsigned char packet[SZ_PACKET + 4];
|
|
int n = 0;
|
|
|
|
if (isize > SZ_PACKET || osize > SZ_PACKET)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
// Setup the request packet.
|
|
packet[0] = 0xFF;
|
|
packet[1] = 0x01;
|
|
packet[2] = isize + 1;
|
|
packet[3] = 0x00;
|
|
memcpy (packet + 4, input, isize);
|
|
|
|
// Send the request packet.
|
|
n = shearwater_predator_slip_write (device, packet, isize + 4);
|
|
if (n != isize + 4) {
|
|
ERROR (abstract->context, "Failed to send the request packet.");
|
|
if (n < 0)
|
|
return DC_STATUS_IO;
|
|
else
|
|
return DC_STATUS_TIMEOUT;
|
|
}
|
|
|
|
// Receive the response packet.
|
|
n = shearwater_predator_slip_read (device, packet, sizeof (packet));
|
|
if (n <= 0 || n > sizeof (packet)) {
|
|
ERROR (abstract->context, "Failed to receive the response packet.");
|
|
if (n < 0)
|
|
return DC_STATUS_IO;
|
|
else if (n > sizeof (packet))
|
|
return DC_STATUS_PROTOCOL;
|
|
else
|
|
return DC_STATUS_TIMEOUT;
|
|
}
|
|
|
|
// Validate the packet header.
|
|
if (n < 4 || packet[0] != 0x01 || packet[1] != 0xFF || packet[3] != 0x00) {
|
|
ERROR (abstract->context, "Invalid packet header.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
// Validate the packet length.
|
|
unsigned int length = packet[2];
|
|
if (length < 1 || length - 1 + 4 != n || length - 1 > osize) {
|
|
ERROR (abstract->context, "Invalid packet header.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
memcpy (output, packet + 4, length - 1);
|
|
*actual = length - 1;
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
dc_status_t
|
|
shearwater_predator_device_open (dc_device_t **out, dc_context_t *context, const char *name)
|
|
{
|
|
if (out == NULL)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
// Allocate memory.
|
|
shearwater_predator_device_t *device = (shearwater_predator_device_t *) malloc (sizeof (shearwater_predator_device_t));
|
|
if (device == NULL) {
|
|
ERROR (context, "Failed to allocate memory.");
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Initialize the base class.
|
|
device_init (&device->base, context, &shearwater_predator_device_vtable);
|
|
|
|
// Set the default values.
|
|
device->port = NULL;
|
|
memset (device->fingerprint, 0, sizeof (device->fingerprint));
|
|
|
|
// Open the device.
|
|
int rc = serial_open (&device->port, context, name);
|
|
if (rc == -1) {
|
|
ERROR (context, "Failed to open the serial port.");
|
|
free (device);
|
|
return DC_STATUS_IO;
|
|
}
|
|
|
|
// Set the serial communication protocol (115200 8N1).
|
|
rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
|
|
if (rc == -1) {
|
|
ERROR (context, "Failed to set the terminal attributes.");
|
|
serial_close (device->port);
|
|
free (device);
|
|
return DC_STATUS_IO;
|
|
}
|
|
|
|
// Set the timeout for receiving data (3000ms).
|
|
if (serial_set_timeout (device->port, 3000) == -1) {
|
|
ERROR (context, "Failed to set the timeout.");
|
|
serial_close (device->port);
|
|
free (device);
|
|
return DC_STATUS_IO;
|
|
}
|
|
|
|
// Make sure everything is in a sane state.
|
|
serial_sleep (device->port, 300);
|
|
serial_flush (device->port, SERIAL_QUEUE_BOTH);
|
|
|
|
*out = (dc_device_t *) device;
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_device_close (dc_device_t *abstract)
|
|
{
|
|
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
|
|
|
|
// Close the device.
|
|
if (serial_close (device->port) == -1) {
|
|
free (device);
|
|
return DC_STATUS_IO;
|
|
}
|
|
|
|
// Free memory.
|
|
free (device);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
|
|
{
|
|
shearwater_predator_device_t *device = (shearwater_predator_device_t *) abstract;
|
|
|
|
if (size && size != sizeof (device->fingerprint))
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
if (size)
|
|
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
|
|
else
|
|
memset (device->fingerprint, 0, sizeof (device->fingerprint));
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
|
|
{
|
|
shearwater_predator_device_t *device = (shearwater_predator_device_t *) abstract;
|
|
dc_status_t rc = DC_STATUS_SUCCESS;
|
|
unsigned int n = 0;
|
|
|
|
unsigned char req_init[] = {
|
|
0x35, 0x00, 0x34,
|
|
0xDD, 0x00, 0x00, 0x00,
|
|
0x02, 0x00, 0x80};
|
|
unsigned char req_block[] = {0x36, 0x00};
|
|
unsigned char req_quit[] = {0x37};
|
|
unsigned char response[SZ_PACKET];
|
|
|
|
// Erase the current contents of the buffer.
|
|
if (!dc_buffer_clear (buffer) || !dc_buffer_reserve (buffer, SZ_MEMORY)) {
|
|
ERROR (abstract->context, "Insufficient buffer space available.");
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Enable progress notifications.
|
|
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
|
|
progress.maximum = 3 + SZ_MEMORY + 1;
|
|
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
|
|
|
|
// Transfer the init request.
|
|
rc = shearwater_predator_transfer (device, req_init, sizeof (req_init), response, 3, &n);
|
|
if (rc != DC_STATUS_SUCCESS) {
|
|
return rc;
|
|
}
|
|
|
|
// Verify the init response.
|
|
if (n != 3 || response[0] != 0x75 || response[1] != 0x10 || response[2] != 0x82) {
|
|
ERROR (abstract->context, "Unexpected response packet.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
// Update and emit a progress event.
|
|
progress.current += 3;
|
|
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
|
|
|
|
unsigned char block = 1;
|
|
unsigned int nbytes = 0;
|
|
while (nbytes < SZ_MEMORY) {
|
|
// Transfer the block request.
|
|
req_block[1] = block;
|
|
rc = shearwater_predator_transfer (device, req_block, sizeof (req_block), response, sizeof (response), &n);
|
|
if (rc != DC_STATUS_SUCCESS) {
|
|
return rc;
|
|
}
|
|
|
|
// Verify the block header.
|
|
if (n < 2 || response[0] != 0x76 || response[1] != block) {
|
|
ERROR (abstract->context, "Unexpected response packet.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
// Verify the block length.
|
|
unsigned int length = n - 2;
|
|
if (nbytes + length > SZ_MEMORY) {
|
|
ERROR (abstract->context, "Unexpected packet size.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
// Update and emit a progress event.
|
|
progress.current += length;
|
|
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
|
|
|
|
dc_buffer_append (buffer, response + 2, length);
|
|
|
|
nbytes += length;
|
|
block++;
|
|
}
|
|
|
|
// Transfer the quit request.
|
|
rc = shearwater_predator_transfer (device, req_quit, sizeof (req_quit), response, 2, &n);
|
|
if (rc != DC_STATUS_SUCCESS) {
|
|
return rc;
|
|
}
|
|
|
|
// Verify the quit response.
|
|
if (n != 2 || response[0] != 0x77 || response[1] != 0x00) {
|
|
ERROR (abstract->context, "Unexpected response packet.");
|
|
return DC_STATUS_PROTOCOL;
|
|
}
|
|
|
|
// Update and emit a progress event.
|
|
progress.current += 1;
|
|
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
|
|
{
|
|
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
|
|
if (buffer == NULL)
|
|
return DC_STATUS_NOMEMORY;
|
|
|
|
dc_status_t rc = shearwater_predator_device_dump (abstract, buffer);
|
|
if (rc != DC_STATUS_SUCCESS) {
|
|
dc_buffer_free (buffer);
|
|
return rc;
|
|
}
|
|
|
|
// Emit a device info event.
|
|
unsigned char *data = dc_buffer_get_data (buffer);
|
|
dc_event_devinfo_t devinfo;
|
|
devinfo.model = data[0x2000D];
|
|
devinfo.firmware = data[0x2000A];
|
|
devinfo.serial = array_uint32_le (data + 0x20002);
|
|
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
|
|
|
|
rc = shearwater_predator_extract_dives (abstract, data, SZ_MEMORY, callback, userdata);
|
|
|
|
dc_buffer_free (buffer);
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_extract_predator (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
|
|
{
|
|
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
|
|
dc_context_t *context = (abstract ? abstract->context : NULL);
|
|
|
|
// Locate the most recent dive.
|
|
// The device maintains an internal counter which is incremented for every
|
|
// dive, and the current value at the time of the dive is stored in the
|
|
// dive header. Thus the most recent dive will have the highest value.
|
|
unsigned int maximum = 0;
|
|
unsigned int eop = RB_PROFILE_END;
|
|
|
|
// Search the ringbuffer backwards to locate matching header and
|
|
// footer markers. Because the ringbuffer search algorithm starts at
|
|
// some arbitrary position, which does not necessary corresponds
|
|
// with a boundary between two dives, the begin position is adjusted
|
|
// as soon as the first dive has been found. Without this step,
|
|
// dives crossing the ringbuffer wrap point won't be detected when
|
|
// searching backwards from the ringbuffer end offset.
|
|
unsigned int footer = 0;
|
|
unsigned int have_footer = 0;
|
|
unsigned int begin = RB_PROFILE_BEGIN;
|
|
unsigned int offset = RB_PROFILE_END;
|
|
while (offset != begin) {
|
|
// Handle the ringbuffer wrap point.
|
|
if (offset == RB_PROFILE_BEGIN)
|
|
offset = RB_PROFILE_END;
|
|
|
|
// Move to the start of the block.
|
|
offset -= SZ_BLOCK;
|
|
|
|
if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) {
|
|
// Ignore empty blocks explicitly, because otherwise they are
|
|
// incorrectly recognized as header markers.
|
|
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF && have_footer) {
|
|
// If the first header marker is found, the begin offset is moved
|
|
// after the corresponding footer marker. This is necessary to be
|
|
// able to detect dives that cross the ringbuffer wrap point.
|
|
if (begin == RB_PROFILE_BEGIN)
|
|
begin = footer + SZ_BLOCK;
|
|
|
|
// Get the internal dive number.
|
|
unsigned int current = array_uint16_be (data + offset + 2);
|
|
if (current > maximum) {
|
|
maximum = current;
|
|
eop = footer + SZ_BLOCK;
|
|
}
|
|
|
|
// The dive number in the header and footer should be identical.
|
|
if (current != array_uint16_be (data + footer + 2)) {
|
|
ERROR (context, "Unexpected dive number.");
|
|
return DC_STATUS_DATAFORMAT;
|
|
}
|
|
|
|
// Reset the footer marker.
|
|
have_footer = 0;
|
|
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE) {
|
|
// Remember the footer marker.
|
|
footer = offset;
|
|
have_footer = 1;
|
|
}
|
|
}
|
|
|
|
// Allocate memory for the profiles.
|
|
unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN);
|
|
if (buffer == NULL) {
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Linearize the ringbuffer.
|
|
memcpy (buffer + 0, data + eop, RB_PROFILE_END - eop);
|
|
memcpy (buffer + RB_PROFILE_END - eop, data + RB_PROFILE_BEGIN, eop - RB_PROFILE_BEGIN);
|
|
|
|
// Find the dives again in the linear buffer.
|
|
footer = 0;
|
|
have_footer = 0;
|
|
offset = RB_PROFILE_END;
|
|
while (offset != RB_PROFILE_BEGIN) {
|
|
// Move to the start of the block.
|
|
offset -= SZ_BLOCK;
|
|
|
|
if (array_isequal (buffer + offset, SZ_BLOCK, 0xFF)) {
|
|
break;
|
|
} else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFF && have_footer) {
|
|
// Check the fingerprint data.
|
|
if (device && memcmp (buffer + offset + 12, device->fingerprint, sizeof (device->fingerprint)) == 0)
|
|
break;
|
|
|
|
if (callback && !callback (buffer + offset, footer + SZ_BLOCK - offset, buffer + offset + 12, sizeof (device->fingerprint), userdata))
|
|
break;
|
|
|
|
have_footer = 0;
|
|
} else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFE) {
|
|
footer = offset;
|
|
have_footer = 1;
|
|
}
|
|
}
|
|
|
|
free (buffer);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
shearwater_predator_extract_petrel (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
|
|
{
|
|
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
|
|
dc_context_t *context = (abstract ? abstract->context : NULL);
|
|
|
|
// Search the ringbuffer to locate matching header and footer
|
|
// markers. Because the Petrel does reorder the internal ringbuffer
|
|
// before sending the data, the most recent dive is always the first
|
|
// one. Therefore, there is no need to search for it, as we have to
|
|
// do for the Predator.
|
|
unsigned int header = 0;
|
|
unsigned int have_header = 0;
|
|
unsigned int offset = RB_PROFILE_BEGIN;
|
|
while (offset != RB_PROFILE_END) {
|
|
if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) {
|
|
// Ignore empty blocks explicitly, because otherwise they are
|
|
// incorrectly recognized as header markers.
|
|
break;
|
|
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF) {
|
|
// Remember the header marker.
|
|
header = offset;
|
|
have_header = 1;
|
|
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE && have_header) {
|
|
// The dive number in the header and footer should be identical.
|
|
if (memcmp (data + header + 2, data + offset + 2, 2) != 0) {
|
|
ERROR (context, "Unexpected dive number.");
|
|
return DC_STATUS_DATAFORMAT;
|
|
}
|
|
|
|
// Check the fingerprint data.
|
|
if (device && memcmp (data + header + 12, device->fingerprint, sizeof (device->fingerprint)) == 0)
|
|
break;
|
|
|
|
if (callback && !callback (data + header, offset + SZ_BLOCK - header, data + header + 12, sizeof (device->fingerprint), userdata))
|
|
break;
|
|
|
|
// Reset the header marker.
|
|
have_header = 0;
|
|
}
|
|
|
|
offset += SZ_BLOCK;
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
dc_status_t
|
|
shearwater_predator_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
|
|
{
|
|
if (abstract && !device_is_shearwater_predator (abstract))
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
if (size < SZ_MEMORY)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
unsigned int model = data[0x2000D];
|
|
|
|
if (model == PETREL) {
|
|
return shearwater_predator_extract_petrel (abstract, data, size, callback, userdata);
|
|
} else {
|
|
return shearwater_predator_extract_predator (abstract, data, size, callback, userdata);
|
|
}
|
|
}
|