libdivecomputer/src/shearwater_predator.c
Jef Driesen 007479fc92 Rename the backend structure to vtable.
The term "backend" can be confusing because it can refer to both the
virtual function table and the device/parser backends. The use of the
term "vtable" avoids this.
2013-04-16 12:18:53 +02:00

640 lines
18 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2012 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <libdivecomputer/shearwater_predator.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "array.h"
#define PREDATOR 2
#define PETREL 3
#define SZ_PACKET 254
#define SZ_BLOCK 0x80
#define SZ_MEMORY 0x20080
#define RB_PROFILE_BEGIN 0
#define RB_PROFILE_END 0x1F600
// SLIP special character codes
#define END 0xC0
#define ESC 0xDB
#define ESC_END 0xDC
#define ESC_ESC 0xDD
#define EXITCODE(n) ((n) < 0 ? (n) : 0)
typedef struct shearwater_predator_device_t {
dc_device_t base;
serial_t *port;
unsigned char fingerprint[4];
} shearwater_predator_device_t;
static dc_status_t shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t shearwater_predator_device_close (dc_device_t *abstract);
static const dc_device_vtable_t shearwater_predator_device_vtable = {
DC_FAMILY_SHEARWATER_PREDATOR,
shearwater_predator_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
shearwater_predator_device_dump, /* dump */
shearwater_predator_device_foreach, /* foreach */
shearwater_predator_device_close /* close */
};
static int
device_is_shearwater_predator (dc_device_t *abstract)
{
if (abstract == NULL)
return 0;
return abstract->vtable == &shearwater_predator_device_vtable;
}
static int
shearwater_predator_slip_write (shearwater_predator_device_t *device, const unsigned char data[], unsigned int size)
{
int n = 0;
const unsigned char end[] = {END};
const unsigned char esc_end[] = {ESC, ESC_END};
const unsigned char esc_esc[] = {ESC, ESC_ESC};
#if 0
// Send an initial END character to flush out any data that may have
// accumulated in the receiver due to line noise.
n = serial_write (device->port, end, sizeof (end));
if (n != sizeof (end)) {
return EXITCODE(n);
}
#endif
for (unsigned int i = 0; i < size; ++i) {
const unsigned char *seq = NULL;
unsigned int len = 0;
switch (data[i]) {
case END:
// Escape the END character.
seq = esc_end;
len = sizeof (esc_end);
break;
case ESC:
// Escape the ESC character.
seq = esc_esc;
len = sizeof (esc_esc);
break;
default:
// Normal character.
seq = data + i;
len = 1;
break;
}
n = serial_write (device->port, seq, len);
if (n != len) {
return EXITCODE(n);
}
}
// Send the END character to indicate the end of the packet.
n = serial_write (device->port, end, sizeof (end));
if (n != sizeof (end)) {
return EXITCODE(n);
}
return size;
}
static int
shearwater_predator_slip_read (shearwater_predator_device_t *device, unsigned char data[], unsigned int size)
{
unsigned int received = 0;
// Read bytes until a complete packet has been received. If the
// buffer runs out of space, bytes are dropped. The caller can
// detect this condition because the return value will be larger
// than the supplied buffer size.
while (1) {
unsigned char c = 0;
int n = 0;
// Get a single character to process.
n = serial_read (device->port, &c, 1);
if (n != 1) {
return EXITCODE(n);
}
switch (c) {
case END:
// If it's an END character then we're done.
// As a minor optimization, empty packets are ignored. This
// is to avoid bothering the upper layers with all the empty
// packets generated by the duplicate END characters which
// are sent to try to detect line noise.
if (received)
return received;
else
break;
case ESC:
// If it's an ESC character, get another character and then
// figure out what to store in the packet based on that.
n = serial_read (device->port, &c, 1);
if (n != 1) {
return EXITCODE(n);
}
// If it's not one of the two escaped characters, then we
// have a protocol violation. The best bet seems to be to
// leave the byte alone and just stuff it into the packet.
switch (c) {
case ESC_END:
c = END;
break;
case ESC_ESC:
c = ESC;
break;
}
// Fall-through!
default:
if (received < size)
data[received] = c;
received++;
}
}
return received;
}
static dc_status_t
shearwater_predator_transfer (shearwater_predator_device_t *device, const unsigned char input[], unsigned int isize, unsigned char output[], unsigned int osize, unsigned int *actual)
{
dc_device_t *abstract = (dc_device_t *) device;
unsigned char packet[SZ_PACKET + 4];
int n = 0;
if (isize > SZ_PACKET || osize > SZ_PACKET)
return DC_STATUS_INVALIDARGS;
// Setup the request packet.
packet[0] = 0xFF;
packet[1] = 0x01;
packet[2] = isize + 1;
packet[3] = 0x00;
memcpy (packet + 4, input, isize);
// Send the request packet.
n = shearwater_predator_slip_write (device, packet, isize + 4);
if (n != isize + 4) {
ERROR (abstract->context, "Failed to send the request packet.");
if (n < 0)
return DC_STATUS_IO;
else
return DC_STATUS_TIMEOUT;
}
// Receive the response packet.
n = shearwater_predator_slip_read (device, packet, sizeof (packet));
if (n <= 0 || n > sizeof (packet)) {
ERROR (abstract->context, "Failed to receive the response packet.");
if (n < 0)
return DC_STATUS_IO;
else if (n > sizeof (packet))
return DC_STATUS_PROTOCOL;
else
return DC_STATUS_TIMEOUT;
}
// Validate the packet header.
if (n < 4 || packet[0] != 0x01 || packet[1] != 0xFF || packet[3] != 0x00) {
ERROR (abstract->context, "Invalid packet header.");
return DC_STATUS_PROTOCOL;
}
// Validate the packet length.
unsigned int length = packet[2];
if (length < 1 || length - 1 + 4 != n || length - 1 > osize) {
ERROR (abstract->context, "Invalid packet header.");
return DC_STATUS_PROTOCOL;
}
memcpy (output, packet + 4, length - 1);
*actual = length - 1;
return DC_STATUS_SUCCESS;
}
dc_status_t
shearwater_predator_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
shearwater_predator_device_t *device = (shearwater_predator_device_t *) malloc (sizeof (shearwater_predator_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &shearwater_predator_device_vtable);
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (115200 8N1).
rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (3000ms).
if (serial_set_timeout (device->port, 3000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Make sure everything is in a sane state.
serial_sleep (device->port, 300);
serial_flush (device->port, SERIAL_QUEUE_BOTH);
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_device_close (dc_device_t *abstract)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned int n = 0;
unsigned char req_init[] = {
0x35, 0x00, 0x34,
0xDD, 0x00, 0x00, 0x00,
0x02, 0x00, 0x80};
unsigned char req_block[] = {0x36, 0x00};
unsigned char req_quit[] = {0x37};
unsigned char response[SZ_PACKET];
// Erase the current contents of the buffer.
if (!dc_buffer_clear (buffer) || !dc_buffer_reserve (buffer, SZ_MEMORY)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = 3 + SZ_MEMORY + 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Transfer the init request.
rc = shearwater_predator_transfer (device, req_init, sizeof (req_init), response, 3, &n);
if (rc != DC_STATUS_SUCCESS) {
return rc;
}
// Verify the init response.
if (n != 3 || response[0] != 0x75 || response[1] != 0x10 || response[2] != 0x82) {
ERROR (abstract->context, "Unexpected response packet.");
return DC_STATUS_PROTOCOL;
}
// Update and emit a progress event.
progress.current += 3;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
unsigned char block = 1;
unsigned int nbytes = 0;
while (nbytes < SZ_MEMORY) {
// Transfer the block request.
req_block[1] = block;
rc = shearwater_predator_transfer (device, req_block, sizeof (req_block), response, sizeof (response), &n);
if (rc != DC_STATUS_SUCCESS) {
return rc;
}
// Verify the block header.
if (n < 2 || response[0] != 0x76 || response[1] != block) {
ERROR (abstract->context, "Unexpected response packet.");
return DC_STATUS_PROTOCOL;
}
// Verify the block length.
unsigned int length = n - 2;
if (nbytes + length > SZ_MEMORY) {
ERROR (abstract->context, "Unexpected packet size.");
return DC_STATUS_PROTOCOL;
}
// Update and emit a progress event.
progress.current += length;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
dc_buffer_append (buffer, response + 2, length);
nbytes += length;
block++;
}
// Transfer the quit request.
rc = shearwater_predator_transfer (device, req_quit, sizeof (req_quit), response, 2, &n);
if (rc != DC_STATUS_SUCCESS) {
return rc;
}
// Verify the quit response.
if (n != 2 || response[0] != 0x77 || response[1] != 0x00) {
ERROR (abstract->context, "Unexpected response packet.");
return DC_STATUS_PROTOCOL;
}
// Update and emit a progress event.
progress.current += 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = shearwater_predator_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
// Emit a device info event.
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = data[0x2000D];
devinfo.firmware = data[0x2000A];
devinfo.serial = array_uint32_le (data + 0x20002);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = shearwater_predator_extract_dives (abstract, data, SZ_MEMORY, callback, userdata);
dc_buffer_free (buffer);
return rc;
}
static dc_status_t
shearwater_predator_extract_predator (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
// Locate the most recent dive.
// The device maintains an internal counter which is incremented for every
// dive, and the current value at the time of the dive is stored in the
// dive header. Thus the most recent dive will have the highest value.
unsigned int maximum = 0;
unsigned int eop = RB_PROFILE_END;
// Search the ringbuffer backwards to locate matching header and
// footer markers. Because the ringbuffer search algorithm starts at
// some arbitrary position, which does not necessary corresponds
// with a boundary between two dives, the begin position is adjusted
// as soon as the first dive has been found. Without this step,
// dives crossing the ringbuffer wrap point won't be detected when
// searching backwards from the ringbuffer end offset.
unsigned int footer = 0;
unsigned int have_footer = 0;
unsigned int begin = RB_PROFILE_BEGIN;
unsigned int offset = RB_PROFILE_END;
while (offset != begin) {
// Handle the ringbuffer wrap point.
if (offset == RB_PROFILE_BEGIN)
offset = RB_PROFILE_END;
// Move to the start of the block.
offset -= SZ_BLOCK;
if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) {
// Ignore empty blocks explicitly, because otherwise they are
// incorrectly recognized as header markers.
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF && have_footer) {
// If the first header marker is found, the begin offset is moved
// after the corresponding footer marker. This is necessary to be
// able to detect dives that cross the ringbuffer wrap point.
if (begin == RB_PROFILE_BEGIN)
begin = footer + SZ_BLOCK;
// Get the internal dive number.
unsigned int current = array_uint16_be (data + offset + 2);
if (current > maximum) {
maximum = current;
eop = footer + SZ_BLOCK;
}
// The dive number in the header and footer should be identical.
if (current != array_uint16_be (data + footer + 2)) {
ERROR (context, "Unexpected dive number.");
return DC_STATUS_DATAFORMAT;
}
// Reset the footer marker.
have_footer = 0;
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE) {
// Remember the footer marker.
footer = offset;
have_footer = 1;
}
}
// Allocate memory for the profiles.
unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN);
if (buffer == NULL) {
return DC_STATUS_NOMEMORY;
}
// Linearize the ringbuffer.
memcpy (buffer + 0, data + eop, RB_PROFILE_END - eop);
memcpy (buffer + RB_PROFILE_END - eop, data + RB_PROFILE_BEGIN, eop - RB_PROFILE_BEGIN);
// Find the dives again in the linear buffer.
footer = 0;
have_footer = 0;
offset = RB_PROFILE_END;
while (offset != RB_PROFILE_BEGIN) {
// Move to the start of the block.
offset -= SZ_BLOCK;
if (array_isequal (buffer + offset, SZ_BLOCK, 0xFF)) {
break;
} else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFF && have_footer) {
// Check the fingerprint data.
if (device && memcmp (buffer + offset + 12, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
if (callback && !callback (buffer + offset, footer + SZ_BLOCK - offset, buffer + offset + 12, sizeof (device->fingerprint), userdata))
break;
have_footer = 0;
} else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFE) {
footer = offset;
have_footer = 1;
}
}
free (buffer);
return DC_STATUS_SUCCESS;
}
static dc_status_t
shearwater_predator_extract_petrel (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
// Search the ringbuffer to locate matching header and footer
// markers. Because the Petrel does reorder the internal ringbuffer
// before sending the data, the most recent dive is always the first
// one. Therefore, there is no need to search for it, as we have to
// do for the Predator.
unsigned int header = 0;
unsigned int have_header = 0;
unsigned int offset = RB_PROFILE_BEGIN;
while (offset != RB_PROFILE_END) {
if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) {
// Ignore empty blocks explicitly, because otherwise they are
// incorrectly recognized as header markers.
break;
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF) {
// Remember the header marker.
header = offset;
have_header = 1;
} else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE && have_header) {
// The dive number in the header and footer should be identical.
if (memcmp (data + header + 2, data + offset + 2, 2) != 0) {
ERROR (context, "Unexpected dive number.");
return DC_STATUS_DATAFORMAT;
}
// Check the fingerprint data.
if (device && memcmp (data + header + 12, device->fingerprint, sizeof (device->fingerprint)) == 0)
break;
if (callback && !callback (data + header, offset + SZ_BLOCK - header, data + header + 12, sizeof (device->fingerprint), userdata))
break;
// Reset the header marker.
have_header = 0;
}
offset += SZ_BLOCK;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
shearwater_predator_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !device_is_shearwater_predator (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MEMORY)
return DC_STATUS_DATAFORMAT;
unsigned int model = data[0x2000D];
if (model == PETREL) {
return shearwater_predator_extract_petrel (abstract, data, size, callback, userdata);
} else {
return shearwater_predator_extract_predator (abstract, data, size, callback, userdata);
}
}