/* * libdivecomputer * * Copyright (C) 2009 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include "oceanic_common.h" #include "context-private.h" #include "parser-private.h" #include "array.h" #define ISINSTANCE(parser) dc_parser_isinstance((parser), &oceanic_atom2_parser_vtable) #define ATOM1 0x4250 #define EPICA 0x4257 #define VT3 0x4258 #define T3A 0x4259 #define ATOM2 0x4342 #define GEO 0x4344 #define MANTA 0x4345 #define DATAMASK 0x4347 #define COMPUMASK 0x4348 #define OC1A 0x434E #define F10 0x434D #define WISDOM2 0x4350 #define INSIGHT2 0x4353 #define ELEMENT2 0x4357 #define VEO20 0x4359 #define VEO30 0x435A #define ZEN 0x4441 #define ZENAIR 0x4442 #define ATMOSAI2 0x4443 #define PROPLUS21 0x4444 #define GEO20 0x4446 #define VT4 0x4447 #define OC1B 0x4449 #define VOYAGER2G 0x444B #define ATOM3 0x444C #define DG03 0x444D #define OCS 0x4450 #define OC1C 0x4451 #define VT41 0x4452 #define EPICB 0x4453 #define T3B 0x4455 #define ATOM31 0x4456 #define A300AI 0x4457 #define A300 0x445A #define TX1 0x4542 #define AMPHOS 0x4545 #define PROPLUS3 0x4548 #define OCI 0x454B #define A300CS 0x454C typedef struct oceanic_atom2_parser_t oceanic_atom2_parser_t; struct oceanic_atom2_parser_t { dc_parser_t base; unsigned int model; // Cached fields. unsigned int cached; unsigned int divetime; double maxdepth; }; static dc_status_t oceanic_atom2_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size); static dc_status_t oceanic_atom2_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime); static dc_status_t oceanic_atom2_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value); static dc_status_t oceanic_atom2_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata); static dc_status_t oceanic_atom2_parser_destroy (dc_parser_t *abstract); static const dc_parser_vtable_t oceanic_atom2_parser_vtable = { DC_FAMILY_OCEANIC_ATOM2, oceanic_atom2_parser_set_data, /* set_data */ oceanic_atom2_parser_get_datetime, /* datetime */ oceanic_atom2_parser_get_field, /* fields */ oceanic_atom2_parser_samples_foreach, /* samples_foreach */ oceanic_atom2_parser_destroy /* destroy */ }; dc_status_t oceanic_atom2_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model) { if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) malloc (sizeof (oceanic_atom2_parser_t)); if (parser == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Initialize the base class. parser_init (&parser->base, context, &oceanic_atom2_parser_vtable); // Set the default values. parser->model = model; parser->cached = 0; parser->divetime = 0; parser->maxdepth = 0.0; *out = (dc_parser_t*) parser; return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_destroy (dc_parser_t *abstract) { // Free memory. free (abstract); return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; // Reset the cache. parser->cached = 0; parser->divetime = 0; parser->maxdepth = 0.0; return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; unsigned int header = 8; if (parser->model == F10) header = 32; if (abstract->size < header) return DC_STATUS_DATAFORMAT; const unsigned char *p = abstract->data; if (datetime) { // AM/PM bit of the 12-hour clock. unsigned int pm = p[1] & 0x80; switch (parser->model) { case OC1A: case OC1B: case OC1C: case OCS: case VT4: case VT41: case ATOM3: case ATOM31: case A300AI: case OCI: datetime->year = ((p[5] & 0xE0) >> 5) + ((p[7] & 0xE0) >> 2) + 2000; datetime->month = (p[3] & 0x0F); datetime->day = ((p[0] & 0x80) >> 3) + ((p[3] & 0xF0) >> 4); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0] & 0x7F); break; case VT3: case VEO20: case VEO30: case DG03: datetime->year = ((p[3] & 0xE0) >> 1) + (p[4] & 0x0F) + 2000; datetime->month = (p[4] & 0xF0) >> 4; datetime->day = p[3] & 0x1F; datetime->hour = bcd2dec (p[1] & 0x7F); datetime->minute = bcd2dec (p[0]); break; case ZENAIR: case AMPHOS: case VOYAGER2G: datetime->year = (p[3] & 0x0F) + 2000; datetime->month = (p[7] & 0xF0) >> 4; datetime->day = ((p[3] & 0x80) >> 3) + ((p[5] & 0xF0) >> 4); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; case F10: datetime->year = bcd2dec (p[6]) + 2000; datetime->month = bcd2dec (p[7]); datetime->day = bcd2dec (p[8]); datetime->hour = bcd2dec (p[13] & 0x7F); datetime->minute = bcd2dec (p[12]); pm = p[13] & 0x80; break; case TX1: datetime->year = bcd2dec (p[13]) + 2000; datetime->month = bcd2dec (p[14]); datetime->day = bcd2dec (p[15]); datetime->hour = p[11]; datetime->minute = p[10]; break; case A300CS: datetime->year = (p[10]) + 2000; datetime->month = (p[8]); datetime->day = (p[9]); datetime->hour = bcd2dec(p[1] & 0x1F); datetime->minute = bcd2dec(p[0]); break; default: datetime->year = bcd2dec (((p[3] & 0xC0) >> 2) + (p[4] & 0x0F)) + 2000; datetime->month = (p[4] & 0xF0) >> 4; if (parser->model == T3A || parser->model == T3B || parser->model == GEO20 || parser->model == PROPLUS3) datetime->day = p[3] & 0x3F; else datetime->day = bcd2dec (p[3] & 0x3F); datetime->hour = bcd2dec (p[1] & 0x1F); datetime->minute = bcd2dec (p[0]); break; } datetime->second = 0; // Convert to a 24-hour clock. datetime->hour %= 12; if (pm) datetime->hour += 12; /* * Workaround for the year 2010 problem. * * In theory there are more than enough bits available to store years * past 2010. Unfortunately some models do not use all those bits and * store only the last digit of the year. We try to guess the missing * information based on the current year. This should work in most * cases, except when the dive is more than 10 years old or in the * future (due to an incorrect clock on the device or the host system). * * Note that we are careful not to apply any guessing when the year is * actually stored with more bits. We don't want the code to break when * a firmware update fixes this bug. */ if (datetime->year < 2010) { // Retrieve the current year. dc_datetime_t now = {0}; if (dc_datetime_localtime (&now, dc_datetime_now ()) && now.year >= 2010) { // Guess the correct decade. int decade = (now.year / 10) * 10; if (datetime->year % 10 > now.year % 10) decade -= 10; /* Force back to the previous decade. */ // Adjust the year. datetime->year += decade - 2000; } } } return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; // Get the total amount of bytes before and after the profile data. unsigned int headersize = 9 * PAGESIZE / 2; unsigned int footersize = 2 * PAGESIZE / 2; if (parser->model == DATAMASK || parser->model == COMPUMASK || parser->model == GEO || parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OCS || parser->model == PROPLUS3 || parser->model == A300 || parser->model == MANTA || parser->model == INSIGHT2 || parser->model == ZEN) { headersize -= PAGESIZE; } else if (parser->model == VT4 || parser->model == VT41) { headersize += PAGESIZE; } else if (parser->model == TX1) { headersize += 2 * PAGESIZE; } else if (parser->model == ATOM1) { headersize -= 2 * PAGESIZE; } else if (parser->model == F10) { headersize = 3 * PAGESIZE; footersize = PAGESIZE / 2; } if (size < headersize + footersize) return DC_STATUS_DATAFORMAT; // Get the offset to the header and footer sample. unsigned int header = headersize - PAGESIZE / 2; unsigned int footer = size - footersize; if (parser->model == VT4 || parser->model == VT41) { header = 3 * PAGESIZE; } if (!parser->cached) { sample_statistics_t statistics = SAMPLE_STATISTICS_INITIALIZER; dc_status_t rc = oceanic_atom2_parser_samples_foreach ( abstract, sample_statistics_cb, &statistics); if (rc != DC_STATUS_SUCCESS) return rc; parser->cached = 1; parser->divetime = statistics.divetime; parser->maxdepth = statistics.maxdepth; } dc_gasmix_t *gasmix = (dc_gasmix_t *) value; dc_salinity_t *water = (dc_salinity_t *) value; unsigned int oxygen = 0; unsigned int helium = 0; if (value) { switch (type) { case DC_FIELD_DIVETIME: if (parser->model == F10) *((unsigned int *) value) = bcd2dec (data[2]) + bcd2dec (data[3]) * 60 + bcd2dec (data[1]) * 3600; else *((unsigned int *) value) = parser->divetime; break; case DC_FIELD_MAXDEPTH: if (parser->model == F10) *((double *) value) = array_uint16_le (data + 4) / 16.0 * FEET; else *((double *) value) = array_uint16_le (data + footer + 4) / 16.0 * FEET; break; case DC_FIELD_GASMIX_COUNT: if (parser->model == DATAMASK || parser->model == COMPUMASK) { *((unsigned int *) value) = 1; } else if (parser->model == VT4 || parser->model == VT41 || parser->model == OCI) { *((unsigned int *) value) = 4; } else if (parser->model == TX1) { *((unsigned int *) value) = 6; } else if (parser->model == A300CS) { if (data[0x39] & 0x04) { *((unsigned int *) value) = 1; } else if (data[0x39] & 0x08) { *((unsigned int *) value) = 2; } else if (data[0x39] & 0x10) { *((unsigned int *) value) = 3; } else { *((unsigned int *) value) = 4; } } else { *((unsigned int *) value) = 3; } break; case DC_FIELD_GASMIX: if (parser->model == DATAMASK || parser->model == COMPUMASK) { oxygen = data[header + 3]; } else if (parser->model == OCI) { oxygen = data[0x28 + flags]; } else if (parser->model == A300CS) { oxygen = data[0x2A + flags]; } else if (parser->model == TX1) { oxygen = data[0x3E + flags]; helium = data[0x48 + flags]; } else { oxygen = data[header + 4 + flags]; } gasmix->helium = helium / 100.0; gasmix->oxygen = (oxygen ? oxygen / 100.0 : 0.21); gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium; break; case DC_FIELD_SALINITY: if (parser->model == A300CS) { if (data[0x18] & 0x80) { water->type = DC_WATER_FRESH; } else { water->type = DC_WATER_SALT; } water->density = 0.0; } else { return DC_STATUS_UNSUPPORTED; } break; default: return DC_STATUS_UNSUPPORTED; } } return DC_STATUS_SUCCESS; } static dc_status_t oceanic_atom2_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata) { oceanic_atom2_parser_t *parser = (oceanic_atom2_parser_t *) abstract; const unsigned char *data = abstract->data; unsigned int size = abstract->size; // Get the total amount of bytes before and after the profile data. unsigned int headersize = 9 * PAGESIZE / 2; unsigned int footersize = 2 * PAGESIZE / 2; if (parser->model == DATAMASK || parser->model == COMPUMASK || parser->model == GEO || parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OCS || parser->model == PROPLUS3 || parser->model == A300 || parser->model == MANTA || parser->model == INSIGHT2 || parser->model == ZEN) { headersize -= PAGESIZE; } else if (parser->model == VT4 || parser->model == VT41) { headersize += PAGESIZE; } else if (parser->model == TX1) { headersize += 2 * PAGESIZE; } else if (parser->model == ATOM1) { headersize -= 2 * PAGESIZE; } else if (parser->model == F10) { headersize = 3 * PAGESIZE; footersize = PAGESIZE / 2; } else if (parser->model == A300CS) { headersize = 5 * PAGESIZE; } if (size < headersize + footersize) return DC_STATUS_DATAFORMAT; // Get the offset to the header sample. unsigned int header = headersize - PAGESIZE / 2; unsigned int time = 0; unsigned int interval = 1; if (parser->model != F10) { unsigned int idx = 0x17; if (parser->model == A300CS) idx = 0x1f; switch (data[idx] & 0x03) { case 0: interval = 2; break; case 1: interval = 15; break; case 2: interval = 30; break; case 3: interval = 60; break; } } unsigned int samplesize = PAGESIZE / 2; if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == TX1 || parser->model == A300CS) samplesize = PAGESIZE; else if (parser->model == F10) samplesize = 2; unsigned int have_temperature = 1, have_pressure = 1; if (parser->model == VEO30 || parser->model == OCS || parser->model == ELEMENT2 || parser->model == VEO20 || parser->model == A300 || parser->model == ZEN) { have_pressure = 0; } else if (parser->model == F10) { have_temperature = 0; have_pressure = 0; } // Initial temperature. unsigned int temperature = 0; if (have_temperature) { temperature = data[header + 7]; } // Initial tank pressure. unsigned int tank = 0; unsigned int pressure = 0; if (have_pressure) { unsigned int idx = 2; if (parser->model == A300CS) idx = 16; pressure = data[header + idx] + (data[header + idx + 1] << 8); if (pressure == 10000) have_pressure = 0; } unsigned int complete = 1; unsigned int offset = headersize; while (offset + samplesize <= size - footersize) { dc_sample_value_t sample = {0}; // Ignore empty samples. if (array_isequal (data + offset, samplesize, 0x00) || array_isequal (data + offset, samplesize, 0xFF)) { offset += samplesize; continue; } // Time. if (complete) { time += interval; sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); complete = 0; } // Get the sample type. unsigned int sampletype = data[offset + 0]; if (parser->model == F10) sampletype = 0; // The sample size is usually fixed, but some sample types have a // larger size. Check whether we have that many bytes available. unsigned int length = samplesize; if (sampletype == 0xBB) { length = PAGESIZE; if (offset + length > size - PAGESIZE) return DC_STATUS_DATAFORMAT; } // Vendor specific data sample.vendor.type = SAMPLE_VENDOR_OCEANIC_ATOM2; sample.vendor.size = length; sample.vendor.data = data + offset; if (callback) callback (DC_SAMPLE_VENDOR, sample, userdata); // Check for a tank switch sample. if (sampletype == 0xAA) { if (parser->model == DATAMASK || parser->model == COMPUMASK) { // Tank pressure (1 psi) and number tank = 0; pressure = (((data[offset + 7] << 8) + data[offset + 6]) & 0x0FFF); } else if (parser->model == A300CS) { // Tank pressure (1 psi) and number (one based index) tank = (data[offset + 1] & 0x03) - 1; pressure = ((data[offset + 7] << 8) + data[offset + 6]) & 0x0FFF; } else { // Tank pressure (2 psi) and number (one based index) tank = (data[offset + 1] & 0x03) - 1; if (parser->model == ATOM2 || parser->model == EPICA || parser->model == EPICB) pressure = (((data[offset + 3] << 8) + data[offset + 4]) & 0x0FFF) * 2; else pressure = (((data[offset + 4] << 8) + data[offset + 5]) & 0x0FFF) * 2; } } else if (sampletype == 0xBB) { // The surface time is not always a nice multiple of the samplerate. // The number of inserted surface samples is therefore rounded down // to keep the timestamps aligned at multiples of the samplerate. unsigned int surftime = 60 * bcd2dec (data[offset + 1]) + bcd2dec (data[offset + 2]); unsigned int nsamples = surftime / interval; for (unsigned int i = 0; i < nsamples; ++i) { if (complete) { time += interval; sample.time = time; if (callback) callback (DC_SAMPLE_TIME, sample, userdata); } sample.depth = 0.0; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); complete = 1; } } else { // Temperature (°F) if (have_temperature) { if (parser->model == GEO || parser->model == ATOM1 || parser->model == ELEMENT2) { temperature = data[offset + 6]; } else if (parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == A300) { temperature = data[offset + 3]; } else if (parser->model == OCS || parser->model == TX1) { temperature = data[offset + 1]; } else if (parser->model == VT4 || parser->model == VT41 || parser->model == ATOM3 || parser->model == ATOM31 || parser->model == A300AI) { temperature = ((data[offset + 7] & 0xF0) >> 4) | ((data[offset + 7] & 0x0C) << 2) | ((data[offset + 5] & 0x0C) << 4); } else if (parser->model == A300CS) { temperature = data[offset + 11]; } else { unsigned int sign; if (parser->model == DG03 || parser->model == PROPLUS3) sign = (~data[offset + 5] & 0x04) >> 2; else if (parser->model == VOYAGER2G) sign = (data[offset + 5] & 0x04) >> 2; else if (parser->model == ATOM2 || parser->model == PROPLUS21 || parser->model == EPICA || parser->model == EPICB || parser->model == ATMOSAI2 || parser->model == AMPHOS || parser->model == WISDOM2) sign = (data[offset + 0] & 0x80) >> 7; else sign = (~data[offset + 0] & 0x80) >> 7; if (sign) temperature -= (data[offset + 7] & 0x0C) >> 2; else temperature += (data[offset + 7] & 0x0C) >> 2; } sample.temperature = (temperature - 32.0) * (5.0 / 9.0); if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata); } // Tank Pressure (psi) if (have_pressure) { if (parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI) pressure = (data[offset + 10] + (data[offset + 11] << 8)) & 0x0FFF; else if (parser->model == VT4 || parser->model == VT41|| parser->model == ATOM3 || parser->model == ATOM31 || parser->model == ZENAIR ||parser->model == A300AI || parser->model == DG03 || parser->model == PROPLUS3) pressure = (((data[offset + 0] & 0x03) << 8) + data[offset + 1]) * 5; else if (parser->model == TX1 || parser->model == A300CS) pressure = array_uint16_le (data + offset + 4); else pressure -= data[offset + 1]; sample.pressure.tank = tank; sample.pressure.value = pressure * PSI / BAR; if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata); } // Depth (1/16 ft) unsigned int depth; if (parser->model == GEO20 || parser->model == VEO20 || parser->model == VEO30 || parser->model == OC1A || parser->model == OC1B || parser->model == OC1C || parser->model == OCI || parser->model == A300) depth = (data[offset + 4] + (data[offset + 5] << 8)) & 0x0FFF; else if (parser->model == ATOM1) depth = data[offset + 3] * 16; else if (parser->model == F10) depth = array_uint16_le (data + offset); else depth = (data[offset + 2] + (data[offset + 3] << 8)) & 0x0FFF; sample.depth = depth / 16.0 * FEET; if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata); // NDL / Deco // bits 6..4 of byte 15 encode deco state & depth // bytes 6 & 7 encode minutes of NDL / deco if (parser->model == A300CS) { unsigned int deco = (data[offset + 15] & 0x70) >> 4; if (deco) { sample.deco.type = DC_DECO_DECOSTOP; sample.deco.depth = deco * 10 * FEET; } else { sample.deco.type = DC_DECO_NDL; sample.deco.depth = 0.0; } sample.deco.time = array_uint16_le(data + offset + 6) & 0x03FF; if (callback) callback (DC_SAMPLE_DECO, sample, userdata); } complete = 1; } offset += length; } return DC_STATUS_SUCCESS; }