/* * libdivecomputer * * Copyright (C) 2009 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include // memcmp, memcpy #include // malloc, free #include #include "context-private.h" #include "device-private.h" #include "serial.h" #include "checksum.h" #include "array.h" #include "ihex.h" #define ISINSTANCE(device) dc_device_isinstance((device), &hw_ostc_device_vtable) #define EXITCODE(rc) \ ( \ rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \ ) #define C_ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a))) #define MAXRETRIES 9 #define FW_190 0x015A #define SZ_MD2HASH 18 #define SZ_EEPROM 256 #define SZ_HEADER 266 #define SZ_FW_190 0x8000 #define SZ_FW_NEW 0x10000 #define SZ_FIRMWARE 0x17F40 #define SZ_BLOCK 0x40 #define ACK 0x4B /* "K" for ok */ #define NAK 0x4E /* "N" for not ok */ #define PICTYPE 0x57 /* PIC type (18F4685) */ #define WIDTH 320 #define HEIGHT 240 #define BLACK 0x00 #define WHITE 0xFF typedef struct hw_ostc_device_t { dc_device_t base; serial_t *port; unsigned char fingerprint[5]; } hw_ostc_device_t; typedef struct hw_ostc_firmware_t { unsigned char data[SZ_FIRMWARE]; unsigned char bitmap[SZ_FIRMWARE / SZ_BLOCK]; } hw_ostc_firmware_t; static dc_status_t hw_ostc_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size); static dc_status_t hw_ostc_device_dump (dc_device_t *abstract, dc_buffer_t *buffer); static dc_status_t hw_ostc_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata); static dc_status_t hw_ostc_device_close (dc_device_t *abstract); static const dc_device_vtable_t hw_ostc_device_vtable = { DC_FAMILY_HW_OSTC, hw_ostc_device_set_fingerprint, /* set_fingerprint */ NULL, /* read */ NULL, /* write */ hw_ostc_device_dump, /* dump */ hw_ostc_device_foreach, /* foreach */ hw_ostc_device_close /* close */ }; static dc_status_t hw_ostc_send (hw_ostc_device_t *device, unsigned char cmd, unsigned int echo) { dc_device_t *abstract = (dc_device_t *) device; // Send the command. unsigned char command[1] = {cmd}; int n = serial_write (device->port, command, sizeof (command)); if (n != sizeof (command)) { ERROR (abstract->context, "Failed to send the command."); return EXITCODE (n); } if (echo) { // Read the echo. unsigned char answer[1] = {0}; n = serial_read (device->port, answer, sizeof (answer)); if (n != sizeof (answer)) { ERROR (abstract->context, "Failed to receive the echo."); return EXITCODE (n); } // Verify the echo. if (memcmp (answer, command, sizeof (command)) != 0) { ERROR (abstract->context, "Unexpected echo."); return DC_STATUS_PROTOCOL; } } return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_device_open (dc_device_t **out, dc_context_t *context, const char *name) { if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. hw_ostc_device_t *device = (hw_ostc_device_t *) malloc (sizeof (hw_ostc_device_t)); if (device == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Initialize the base class. device_init (&device->base, context, &hw_ostc_device_vtable); // Set the default values. device->port = NULL; memset (device->fingerprint, 0, sizeof (device->fingerprint)); // Open the device. int rc = serial_open (&device->port, context, name); if (rc == -1) { ERROR (context, "Failed to open the serial port."); free (device); return DC_STATUS_IO; } // Set the serial communication protocol (115200 8N1). rc = serial_configure (device->port, 115200, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE); if (rc == -1) { ERROR (context, "Failed to set the terminal attributes."); serial_close (device->port); free (device); return DC_STATUS_IO; } // Set the timeout for receiving data. if (serial_set_timeout (device->port, 4000) == -1) { ERROR (context, "Failed to set the timeout."); serial_close (device->port); free (device); return DC_STATUS_IO; } // Make sure everything is in a sane state. serial_sleep (device->port, 100); serial_flush (device->port, SERIAL_QUEUE_BOTH); *out = (dc_device_t*) device; return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_device_close (dc_device_t *abstract) { hw_ostc_device_t *device = (hw_ostc_device_t*) abstract; // Close the device. if (serial_close (device->port) == -1) { free (device); return DC_STATUS_IO; } // Free memory. free (device); return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (size && size != sizeof (device->fingerprint)) return DC_STATUS_INVALIDARGS; if (size) memcpy (device->fingerprint, data, sizeof (device->fingerprint)); else memset (device->fingerprint, 0, sizeof (device->fingerprint)); return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_device_dump (dc_device_t *abstract, dc_buffer_t *buffer) { hw_ostc_device_t *device = (hw_ostc_device_t*) abstract; // Erase the current contents of the buffer. if (!dc_buffer_clear (buffer)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; progress.maximum = SZ_HEADER + SZ_FW_NEW; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Send the command. unsigned char command[1] = {'a'}; int rc = serial_write (device->port, command, sizeof (command)); if (rc != sizeof (command)) { ERROR (abstract->context, "Failed to send the command."); return EXITCODE (rc); } // Read the header. unsigned char header[SZ_HEADER] = {0}; int n = serial_read (device->port, header, sizeof (header)); if (n != sizeof (header)) { ERROR (abstract->context, "Failed to receive the header."); return EXITCODE (n); } // Verify the header. unsigned char preamble[] = {0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x55}; if (memcmp (header, preamble, sizeof (preamble)) != 0) { ERROR (abstract->context, "Unexpected answer header."); return DC_STATUS_DATAFORMAT; } // Get the firmware version. unsigned int firmware = array_uint16_be (header + 264); // Get the amount of profile data. unsigned int size = sizeof (header); if (firmware > FW_190) size += SZ_FW_NEW; else size += SZ_FW_190; // Update and emit a progress event. progress.current = sizeof (header); progress.maximum = size; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Allocate the required amount of memory. if (!dc_buffer_resize (buffer, size)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } unsigned char *data = dc_buffer_get_data (buffer); // Copy the header to the output buffer. memcpy (data, header, sizeof (header)); unsigned int nbytes = sizeof (header); while (nbytes < size) { // Set the minimum packet size. unsigned int len = 1024; // Increase the packet size if more data is immediately available. int available = serial_get_received (device->port); if (available > len) len = available; // Limit the packet size to the total size. if (nbytes + len > size) len = size - nbytes; // Read the packet. int n = serial_read (device->port, data + nbytes, len); if (n != len) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } // Update and emit a progress event. progress.current += len; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); nbytes += len; } return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata) { dc_buffer_t *buffer = dc_buffer_new (0); if (buffer == NULL) return DC_STATUS_NOMEMORY; dc_status_t rc = hw_ostc_device_dump (abstract, buffer); if (rc != DC_STATUS_SUCCESS) { dc_buffer_free (buffer); return rc; } // Emit a device info event. unsigned char *data = dc_buffer_get_data (buffer); dc_event_devinfo_t devinfo; devinfo.firmware = array_uint16_be (data + 264); devinfo.serial = array_uint16_le (data + 6); if (devinfo.serial > 7000) devinfo.model = 3; // OSTC 2C else if (devinfo.serial > 2048) devinfo.model = 2; // OSTC 2N else if (devinfo.serial > 300) devinfo.model = 1; // OSTC Mk2 else devinfo.model = 0; // OSTC device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo); rc = hw_ostc_extract_dives (abstract, dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata); dc_buffer_free (buffer); return rc; } dc_status_t hw_ostc_device_md2hash (dc_device_t *abstract, unsigned char data[], unsigned int size) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (size < SZ_MD2HASH) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_INVALIDARGS; } // Send the command. dc_status_t rc = hw_ostc_send (device, 'e', 0); if (rc != DC_STATUS_SUCCESS) return rc; // Read the answer. int n = serial_read (device->port, data, SZ_MD2HASH); if (n != SZ_MD2HASH) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_device_clock (dc_device_t *abstract, const dc_datetime_t *datetime) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (datetime == NULL) { ERROR (abstract->context, "Invalid parameter specified."); return DC_STATUS_INVALIDARGS; } // Send the command. dc_status_t rc = hw_ostc_send (device, 'b', 1); if (rc != DC_STATUS_SUCCESS) return rc; // Send the data packet. unsigned char packet[6] = { datetime->hour, datetime->minute, datetime->second, datetime->month, datetime->day, datetime->year - 2000}; int n = serial_write (device->port, packet, sizeof (packet)); if (n != sizeof (packet)) { ERROR (abstract->context, "Failed to send the data packet."); return EXITCODE (n); } return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_device_eeprom_read (dc_device_t *abstract, unsigned int bank, unsigned char data[], unsigned int size) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (bank > 2) { ERROR (abstract->context, "Invalid eeprom bank specified."); return DC_STATUS_INVALIDARGS; } if (size < SZ_EEPROM) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_INVALIDARGS; } // Send the command. const unsigned char command[] = {'g', 'j', 'm'}; dc_status_t rc = hw_ostc_send (device, command[bank], 0); if (rc != DC_STATUS_SUCCESS) return rc; // Read the answer. int n = serial_read (device->port, data, SZ_EEPROM); if (n != SZ_EEPROM) { ERROR (abstract->context, "Failed to receive the answer."); return EXITCODE (n); } return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_device_eeprom_write (dc_device_t *abstract, unsigned int bank, const unsigned char data[], unsigned int size) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (bank > 2) { ERROR (abstract->context, "Invalid eeprom bank specified."); return DC_STATUS_INVALIDARGS; } if (size != SZ_EEPROM) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_INVALIDARGS; } // Send the command. const unsigned char command[] = {'d', 'i', 'n'}; dc_status_t rc = hw_ostc_send (device, command[bank], 1); if (rc != DC_STATUS_SUCCESS) return rc; for (unsigned int i = 4; i < SZ_EEPROM; ++i) { // Send the data byte. rc = hw_ostc_send (device, data[i], 1); if (rc != DC_STATUS_SUCCESS) return rc; } return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_device_reset (dc_device_t *abstract) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; // Send the command. dc_status_t rc = hw_ostc_send (device, 'h', 1); if (rc != DC_STATUS_SUCCESS) return rc; return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_device_screenshot (dc_device_t *abstract, dc_buffer_t *buffer, hw_ostc_format_t format) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; // Erase the current contents of the buffer. if (!dc_buffer_clear (buffer)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } // Bytes per pixel (RGB formats only). unsigned int bpp = 0; if (format == HW_OSTC_FORMAT_RAW) { // The RAW format has a variable size, depending on the actual image // content. Usually the total size is around 4K, which is used as an // initial guess and expanded when necessary. if (!dc_buffer_reserve (buffer, 4096)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } } else { // The RGB formats have a fixed size, depending only on the dimensions // and the number of bytes per pixel. The required amount of memory is // allocated immediately. bpp = (format == HW_OSTC_FORMAT_RGB16) ? 2 : 3; if (!dc_buffer_resize (buffer, WIDTH * HEIGHT * bpp)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } } // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; progress.maximum = WIDTH * HEIGHT; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); // Send the command. dc_status_t rc = hw_ostc_send (device, 'l', 1); if (rc != DC_STATUS_SUCCESS) return rc; // Cache the pointer to the image data (RGB formats only). unsigned char *image = dc_buffer_get_data (buffer); // The OSTC sends the image data in a column by column layout, which is // converted on the fly to a more convenient row by row layout as used // in the majority of image formats. This conversions requires knowledge // of the pixel coordinates. unsigned int x = 0, y = 0; unsigned int npixels = 0; while (npixels < WIDTH * HEIGHT) { unsigned char raw[3] = {0}; int n = serial_read (device->port, raw, 1); if (n != 1) { ERROR (abstract->context, "Failed to receive the packet."); return EXITCODE (n); } unsigned int nbytes = n; unsigned int count = raw[0]; if ((count & 0x80) == 0x00) { // Black pixel. raw[1] = raw[2] = BLACK; count &= 0x7F; } else if ((count & 0xC0) == 0xC0) { // White pixel. raw[1] = raw[2] = WHITE; count &= 0x3F; } else { // Color pixel. n = serial_read (device->port, raw + 1, 2); if (n != 2) { ERROR (abstract->context, "Failed to receive the packet."); return EXITCODE (n); } nbytes += n; count &= 0x3F; } count++; // Check for buffer overflows. if (npixels + count > WIDTH * HEIGHT) { ERROR (abstract->context, "Unexpected number of pixels received."); return DC_STATUS_DATAFORMAT; } if (format == HW_OSTC_FORMAT_RAW) { // Append the raw data to the output buffer. dc_buffer_append (buffer, raw, nbytes); } else { // Store the decompressed data in the output buffer. for (unsigned int i = 0; i < count; ++i) { // Calculate the offset to the current pixel (row layout) unsigned int offset = (y * WIDTH + x) * bpp; if (format == HW_OSTC_FORMAT_RGB16) { image[offset + 0] = raw[1]; image[offset + 1] = raw[2]; } else { unsigned int value = (raw[1] << 8) + raw[2]; unsigned char r = (value & 0xF800) >> 11; unsigned char g = (value & 0x07E0) >> 5; unsigned char b = (value & 0x001F); image[offset + 0] = 255 * r / 31; image[offset + 1] = 255 * g / 63; image[offset + 2] = 255 * b / 31; } // Move to the next pixel coordinate (column layout). y++; if (y == HEIGHT) { y = 0; x++; } } } // Update and emit a progress event. progress.current += count; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); npixels += count; } return DC_STATUS_SUCCESS; } dc_status_t hw_ostc_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; const unsigned char header[2] = {0xFA, 0xFA}; const unsigned char footer[2] = {0xFD, 0xFD}; // Initialize the data stream pointers. const unsigned char *current = data + size; const unsigned char *previous = data + size; // Search the data stream for header markers. while ((current = array_search_backward (data + 266, current - data - 266, header, sizeof (header))) != NULL) { // Move the pointer to the begin of the header. current -= sizeof (header); // Once a header marker is found, start searching // for the corresponding footer marker. The search is // now limited to the start of the previous dive. previous = array_search_forward (current, previous - current, footer, sizeof (footer)); if (previous) { // Move the pointer to the end of the footer. previous += sizeof (footer); if (device && memcmp (current + 3, device->fingerprint, sizeof (device->fingerprint)) == 0) return DC_STATUS_SUCCESS; if (callback && !callback (current, previous - current, current + 3, 5, userdata)) return DC_STATUS_SUCCESS; } // Prepare for the next iteration. previous = current; } return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_firmware_readfile (hw_ostc_firmware_t *firmware, dc_context_t *context, const char *filename) { dc_status_t rc = DC_STATUS_SUCCESS; if (firmware == NULL) { ERROR (context, "Invalid arguments."); return DC_STATUS_INVALIDARGS; } // Initialize the buffers. memset (firmware->data, 0xFF, sizeof (firmware->data)); memset (firmware->bitmap, 0x00, sizeof (firmware->bitmap)); // Open the hex file. dc_ihex_file_t *file = NULL; rc = dc_ihex_file_open (&file, context, filename); if (rc != DC_STATUS_SUCCESS) { ERROR (context, "Failed to open the hex file."); return rc; } // Read the hex file. unsigned int lba = 0; dc_ihex_entry_t entry; while ((rc = dc_ihex_file_read (file, &entry)) == DC_STATUS_SUCCESS) { if (entry.type == 0) { // Data record. unsigned int address = (lba << 16) + entry.address; if (address + entry.length > SZ_FIRMWARE) { WARNING (context, "Ignoring out of range record (0x%08x,%u).", address, entry.length); continue; } // Copy the record to the buffer. memcpy (firmware->data + address, entry.data, entry.length); // Mark the corresponding blocks in the bitmap. unsigned int begin = address / SZ_BLOCK; unsigned int end = (address + entry.length + SZ_BLOCK - 1) / SZ_BLOCK; for (unsigned int i = begin; i < end; ++i) { firmware->bitmap[i] = 1; } } else if (entry.type == 1) { // End of file record. break; } else if (entry.type == 4) { // Extended linear address record. lba = array_uint16_be (entry.data); } else { ERROR (context, "Unexpected record type."); dc_ihex_file_close (file); return DC_STATUS_DATAFORMAT; } } if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_DONE) { ERROR (context, "Failed to read the record."); dc_ihex_file_close (file); return rc; } // Close the file. dc_ihex_file_close (file); // Verify the presence of the first block. if (firmware->bitmap[0] == 0) { ERROR (context, "No first data block."); return DC_STATUS_DATAFORMAT; } // Setup the last block. // Copy the "goto main" instruction, stored in the first 8 bytes of the hex // file, to the end of the last block at address 0x17F38. This last block // needs to be present, regardless of whether it's included in the hex file // or not! memset (firmware->data + SZ_FIRMWARE - SZ_BLOCK, 0xFF, SZ_BLOCK - 8); memcpy (firmware->data + SZ_FIRMWARE - 8, firmware->data, 8); firmware->bitmap[C_ARRAY_SIZE(firmware->bitmap) - 1] = 1; // Setup the first block. // Copy the hardcoded "goto 0x17F40" instruction to the start of the first // block at address 0x00000. const unsigned char header[] = {0xA0, 0xEF, 0xBF, 0xF0}; memcpy (firmware->data, header, sizeof (header)); return rc; } static dc_status_t hw_ostc_firmware_setup_internal (hw_ostc_device_t *device) { dc_device_t *abstract = (dc_device_t *) device; // Send the command. unsigned char command[1] = {0xC1}; int n = serial_write (device->port, command, sizeof (command)); if (n != sizeof (command)) { ERROR (abstract->context, "Failed to send the command."); return EXITCODE (n); } // Read the response. unsigned char answer[2] = {0}; n = serial_read (device->port, answer, sizeof (answer)); if (n != sizeof (answer)) { ERROR (abstract->context, "Failed to receive the response."); return EXITCODE (n); } // Verify the response. const unsigned char expected[2] = {PICTYPE, ACK}; if (memcmp (answer, expected, sizeof (expected)) != 0) { ERROR (abstract->context, "Unexpected response."); return DC_STATUS_PROTOCOL; } return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_firmware_setup (hw_ostc_device_t *device, unsigned int maxretries) { dc_status_t rc = DC_STATUS_SUCCESS; unsigned int nretries = 0; while ((rc = hw_ostc_firmware_setup_internal (device)) != DC_STATUS_SUCCESS) { if (rc != DC_STATUS_TIMEOUT && rc != DC_STATUS_PROTOCOL) break; // Abort if the maximum number of retries is reached. if (nretries++ >= maxretries) break; } return rc; } static dc_status_t hw_ostc_firmware_write_internal (hw_ostc_device_t *device, unsigned char *data, unsigned int size) { dc_device_t *abstract = (dc_device_t *) device; // Send the packet. int n = serial_write (device->port, data, size); if (n != size) { ERROR (abstract->context, "Failed to send the packet."); return EXITCODE (n); } // Read the response. unsigned char answer[1] = {0}; n = serial_read (device->port, answer, sizeof (answer)); if (n != sizeof (answer)) { ERROR (abstract->context, "Failed to receive the response."); return EXITCODE (n); } // Verify the response. const unsigned char expected[] = {ACK}; if (memcmp (answer, expected, sizeof (expected)) != 0) { ERROR (abstract->context, "Unexpected response."); return DC_STATUS_PROTOCOL; } return DC_STATUS_SUCCESS; } static dc_status_t hw_ostc_firmware_write (hw_ostc_device_t *device, unsigned char *data, unsigned int size) { dc_status_t rc = DC_STATUS_SUCCESS; unsigned int nretries = 0; while ((rc = hw_ostc_firmware_write_internal (device, data, size)) != DC_STATUS_SUCCESS) { if (rc != DC_STATUS_TIMEOUT && rc != DC_STATUS_PROTOCOL) break; // Abort if the maximum number of retries is reached. if (nretries++ >= MAXRETRIES) break; } return rc; } /* * Think twice before modifying the code for updating the ostc firmware! * It has been carefully developed and tested with assistance from * Heinrichs-Weikamp, using a special development unit. If you start * experimenting with a normal unit and accidentally screw up, you might * brick the device permanently and turn it into an expensive * paperweight. You have been warned! */ dc_status_t hw_ostc_device_fwupdate (dc_device_t *abstract, const char *filename) { dc_status_t rc = DC_STATUS_SUCCESS; hw_ostc_device_t *device = (hw_ostc_device_t *) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); if (!ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; // Allocate memory for the firmware data. hw_ostc_firmware_t *firmware = (hw_ostc_firmware_t *) malloc (sizeof (hw_ostc_firmware_t)); if (firmware == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Read the hex file. rc = hw_ostc_firmware_readfile (firmware, context, filename); if (rc != DC_STATUS_SUCCESS) { ERROR (context, "Failed to read the firmware file."); free (firmware); return rc; } // Temporary set a relative short timeout. The command to setup the // bootloader needs to be send repeatedly, until the response packet is // received. Thus the time between each two attempts is directly controlled // by the timeout value. serial_set_timeout (device->port, 300); // Setup the bootloader. const unsigned int baudrates[] = {19200, 115200}; for (unsigned int i = 0; i < C_ARRAY_SIZE(baudrates); ++i) { // Adjust the baudrate. if (serial_configure (device->port, baudrates[i], 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE) == -1) { ERROR (abstract->context, "Failed to set the terminal attributes."); free (firmware); return DC_STATUS_IO; } // Try to setup the bootloader. unsigned int maxretries = (i == 0 ? 1 : MAXRETRIES); rc = hw_ostc_firmware_setup (device, maxretries); if (rc == DC_STATUS_SUCCESS) break; } if (rc != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to setup the bootloader."); free (firmware); return rc; } // Increase the timeout again. serial_set_timeout (device->port, 1000); // Enable progress notifications. dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER; progress.maximum = C_ARRAY_SIZE(firmware->bitmap); device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); for (unsigned int i = 0; i < C_ARRAY_SIZE(firmware->bitmap); ++i) { // Skip empty blocks. if (firmware->bitmap[i] == 0) continue; // Create the packet. unsigned int address = i * SZ_BLOCK; unsigned char packet[4 + SZ_BLOCK + 1] = { (address >> 16) & 0xFF, (address >> 8) & 0xFF, (address ) & 0xFF, SZ_BLOCK }; memcpy (packet + 4, firmware->data + address, SZ_BLOCK); packet[sizeof (packet) - 1] = ~checksum_add_uint8 (packet, 4 + SZ_BLOCK, 0x00) + 1; // Send the packet. rc = hw_ostc_firmware_write (device, packet, sizeof (packet)); if (rc != DC_STATUS_SUCCESS) { ERROR (abstract->context, "Failed to send the packet."); free (firmware); return rc; } // Update and emit a progress event. progress.current = i + 1; device_event_emit (abstract, DC_EVENT_PROGRESS, &progress); } free (firmware); return DC_STATUS_SUCCESS; }