/* * libdivecomputer * * Copyright (C) 2012 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include // memcmp, memcpy #include // malloc, free #include #include "shearwater_common.h" #include "context-private.h" #include "device-private.h" #include "array.h" #define ISINSTANCE(device) dc_device_isinstance((device), &shearwater_predator_device_vtable) #define PREDATOR 2 #define PETREL 3 #define SZ_BLOCK 0x80 #define SZ_MEMORY 0x20080 #define RB_PROFILE_BEGIN 0 #define RB_PROFILE_END 0x1F600 typedef struct shearwater_predator_device_t { shearwater_common_device_t base; unsigned char fingerprint[4]; } shearwater_predator_device_t; static dc_status_t shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size); static dc_status_t shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer); static dc_status_t shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata); static dc_status_t shearwater_predator_device_close (dc_device_t *abstract); static const dc_device_vtable_t shearwater_predator_device_vtable = { DC_FAMILY_SHEARWATER_PREDATOR, shearwater_predator_device_set_fingerprint, /* set_fingerprint */ NULL, /* read */ NULL, /* write */ shearwater_predator_device_dump, /* dump */ shearwater_predator_device_foreach, /* foreach */ shearwater_predator_device_close /* close */ }; dc_status_t shearwater_predator_device_open (dc_device_t **out, dc_context_t *context, const char *name) { dc_status_t status = DC_STATUS_SUCCESS; shearwater_predator_device_t *device = NULL; if (out == NULL) return DC_STATUS_INVALIDARGS; // Allocate memory. device = (shearwater_predator_device_t *) malloc (sizeof (shearwater_predator_device_t)); if (device == NULL) { ERROR (context, "Failed to allocate memory."); return DC_STATUS_NOMEMORY; } // Initialize the base class. device_init (&device->base.base, context, &shearwater_predator_device_vtable); // Set the default values. memset (device->fingerprint, 0, sizeof (device->fingerprint)); // Open the device. status = shearwater_common_open (&device->base, context, name); if (status != DC_STATUS_SUCCESS) { goto error_free; } *out = (dc_device_t *) device; return DC_STATUS_SUCCESS; error_free: free (device); return status; } static dc_status_t shearwater_predator_device_close (dc_device_t *abstract) { dc_status_t rc = DC_STATUS_SUCCESS; shearwater_common_device_t *device = (shearwater_common_device_t *) abstract; // Close the device. rc = shearwater_common_close (device); // Free memory. free (device); return rc; } static dc_status_t shearwater_predator_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size) { shearwater_predator_device_t *device = (shearwater_predator_device_t *) abstract; if (size && size != sizeof (device->fingerprint)) return DC_STATUS_INVALIDARGS; if (size) memcpy (device->fingerprint, data, sizeof (device->fingerprint)); else memset (device->fingerprint, 0, sizeof (device->fingerprint)); return DC_STATUS_SUCCESS; } static dc_status_t shearwater_predator_device_dump (dc_device_t *abstract, dc_buffer_t *buffer) { shearwater_common_device_t *device = (shearwater_common_device_t *) abstract; // Erase the current contents of the buffer. if (!dc_buffer_clear (buffer) || !dc_buffer_reserve (buffer, SZ_MEMORY)) { ERROR (abstract->context, "Insufficient buffer space available."); return DC_STATUS_NOMEMORY; } return shearwater_common_download (device, buffer, 0xDD000000, SZ_MEMORY, 0); } static dc_status_t shearwater_predator_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata) { dc_buffer_t *buffer = dc_buffer_new (SZ_MEMORY); if (buffer == NULL) return DC_STATUS_NOMEMORY; dc_status_t rc = shearwater_predator_device_dump (abstract, buffer); if (rc != DC_STATUS_SUCCESS) { dc_buffer_free (buffer); return rc; } // Emit a device info event. unsigned char *data = dc_buffer_get_data (buffer); dc_event_devinfo_t devinfo; devinfo.model = data[0x2000D]; devinfo.firmware = data[0x2000A]; devinfo.serial = array_uint32_le (data + 0x20002); device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo); rc = shearwater_predator_extract_dives (abstract, data, SZ_MEMORY, callback, userdata); dc_buffer_free (buffer); return rc; } static dc_status_t shearwater_predator_extract_predator (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); // Locate the most recent dive. // The device maintains an internal counter which is incremented for every // dive, and the current value at the time of the dive is stored in the // dive header. Thus the most recent dive will have the highest value. unsigned int maximum = 0; unsigned int eop = RB_PROFILE_END; // Search the ringbuffer backwards to locate matching header and // footer markers. Because the ringbuffer search algorithm starts at // some arbitrary position, which does not necessary corresponds // with a boundary between two dives, the begin position is adjusted // as soon as the first dive has been found. Without this step, // dives crossing the ringbuffer wrap point won't be detected when // searching backwards from the ringbuffer end offset. unsigned int footer = 0; unsigned int have_footer = 0; unsigned int begin = RB_PROFILE_BEGIN; unsigned int offset = RB_PROFILE_END; while (offset != begin) { // Handle the ringbuffer wrap point. if (offset == RB_PROFILE_BEGIN) offset = RB_PROFILE_END; // Move to the start of the block. offset -= SZ_BLOCK; if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) { // Ignore empty blocks explicitly, because otherwise they are // incorrectly recognized as header markers. } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF && have_footer) { // If the first header marker is found, the begin offset is moved // after the corresponding footer marker. This is necessary to be // able to detect dives that cross the ringbuffer wrap point. if (begin == RB_PROFILE_BEGIN) begin = footer + SZ_BLOCK; // Get the internal dive number. unsigned int current = array_uint16_be (data + offset + 2); if (current > maximum) { maximum = current; eop = footer + SZ_BLOCK; } // The dive number in the header and footer should be identical. if (current != array_uint16_be (data + footer + 2)) { ERROR (context, "Unexpected dive number."); return DC_STATUS_DATAFORMAT; } // Reset the footer marker. have_footer = 0; } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE) { // Remember the footer marker. footer = offset; have_footer = 1; } } // Allocate memory for the profiles. unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN + SZ_BLOCK); if (buffer == NULL) { return DC_STATUS_NOMEMORY; } // Linearize the ringbuffer. memcpy (buffer + 0, data + eop, RB_PROFILE_END - eop); memcpy (buffer + RB_PROFILE_END - eop, data + RB_PROFILE_BEGIN, eop - RB_PROFILE_BEGIN); // Find the dives again in the linear buffer. footer = 0; have_footer = 0; offset = RB_PROFILE_END; while (offset != RB_PROFILE_BEGIN) { // Move to the start of the block. offset -= SZ_BLOCK; if (array_isequal (buffer + offset, SZ_BLOCK, 0xFF)) { break; } else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFF && have_footer) { // Append the final block. unsigned int length = footer + SZ_BLOCK - offset; memcpy (buffer + offset + length, data + SZ_MEMORY - SZ_BLOCK, SZ_BLOCK); // Check the fingerprint data. if (device && memcmp (buffer + offset + 12, device->fingerprint, sizeof (device->fingerprint)) == 0) break; if (callback && !callback (buffer + offset, length + SZ_BLOCK, buffer + offset + 12, sizeof (device->fingerprint), userdata)) break; have_footer = 0; } else if (buffer[offset + 0] == 0xFF && buffer[offset + 1] == 0xFE) { footer = offset; have_footer = 1; } } free (buffer); return DC_STATUS_SUCCESS; } static dc_status_t shearwater_predator_extract_petrel (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { shearwater_predator_device_t *device = (shearwater_predator_device_t*) abstract; dc_context_t *context = (abstract ? abstract->context : NULL); // Allocate memory for the profiles. unsigned char *buffer = (unsigned char *) malloc (RB_PROFILE_END - RB_PROFILE_BEGIN + SZ_BLOCK); if (buffer == NULL) { return DC_STATUS_NOMEMORY; } // Search the ringbuffer to locate matching header and footer // markers. Because the Petrel does reorder the internal ringbuffer // before sending the data, the most recent dive is always the first // one. Therefore, there is no need to search for it, as we have to // do for the Predator. unsigned int header = 0; unsigned int have_header = 0; unsigned int offset = RB_PROFILE_BEGIN; while (offset != RB_PROFILE_END) { if (array_isequal (data + offset, SZ_BLOCK, 0xFF)) { // Ignore empty blocks explicitly, because otherwise they are // incorrectly recognized as header markers. break; } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFF) { // Remember the header marker. header = offset; have_header = 1; } else if (data[offset + 0] == 0xFF && data[offset + 1] == 0xFE && have_header) { // The dive number in the header and footer should be identical. if (memcmp (data + header + 2, data + offset + 2, 2) != 0) { ERROR (context, "Unexpected dive number."); free (buffer); return DC_STATUS_DATAFORMAT; } // Append the final block. unsigned int length = offset + SZ_BLOCK - header; memcpy (buffer, data + header, length); memcpy (buffer + length, data + SZ_MEMORY - SZ_BLOCK, SZ_BLOCK); // Check the fingerprint data. if (device && memcmp (buffer + 12, device->fingerprint, sizeof (device->fingerprint)) == 0) break; if (callback && !callback (buffer, length + SZ_BLOCK, buffer + 12, sizeof (device->fingerprint), userdata)) break; // Reset the header marker. have_header = 0; } offset += SZ_BLOCK; } free (buffer); return DC_STATUS_SUCCESS; } dc_status_t shearwater_predator_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata) { if (abstract && !ISINSTANCE (abstract)) return DC_STATUS_INVALIDARGS; if (size < SZ_MEMORY) return DC_STATUS_DATAFORMAT; unsigned int model = data[0x2000D]; if (model == PETREL) { return shearwater_predator_extract_petrel (abstract, data, size, callback, userdata); } else { return shearwater_predator_extract_predator (abstract, data, size, callback, userdata); } }