Keeping the one based tank number interally allows to easily discard the
pressure samples from invalid tanks. This avoid returning a huge tank
number (e.g. 0xFFFFFFFF) when the internal tank number happens to be
zero.
The dc_parser_set_data() function allows to re-use a parser object for
multiple dives. The advantages of this feature are actually very limited
in practice. The reduction in memory consumption is almost negligible,
because the amount of internal state in the parser is typically very
small. But the implementation requires some additional complexity
because each backend needs code to reset its internal state. Therefore,
the function is removed and the data and size needs to be passed
directly to the dc_parser_new() and dc_parser_new2() functions instead.
Because keeping a reference to the data has also caused issues in the
past, especially for applications implemented in a garbage collected
language, the data will now also get copied internally.
Because the sample struct is passed by value, the size of the structure
can't be changed without also changing the function signature and
breaking backwards compatibility. This prevents adding new fields in the
future, to support some new features.
When passing the sample struct by reference using a pointer, the size of
the pointer does always remains the same.
For gas consumption calculations it's very convenient to know whether a
tank is used for example in a sidemount configuration, or as
oxygen/diluent tank on a rebreather.
For rebreather dives, it's convenient to know whether a gas mix is used
as a closed-circuit mix (oxygen/diluent) or as an open circuit mix
(bailout).
Some dive computers report the time of the next decompression stop,
while others report the Time To Surface (TTS). Some models can even
report both.
Add a TTS field to the deco sample to support both values.
After the previous commit changed the resolution of the sample time to
milliseconds, the dive computers which actually support a higher
resoltion can now enable this feature and report all samples.
Some dive computers, especially freediving computers, supports multiple
samples per second. Since our smallest unit of time is one second, we
can't represent this, and the extra samples are dropped. Therefore, the
units are changed to milliseconds to prepare supporting this extra
resolution.
For dive computers where the reference time (epoch) of the device is
unknown, libdivecomputer uses the current time of the device (devtime)
and the host system (systime) to synchronize both clocks.
Currently, both timestamps are passed directly to the constructor of the
parser. With the new public function, the application can adjust the
timestamps afterwards.
Some dive computers store the depth as an absolute pressure value (in
bar). To convert to a depth value (in meters), the atmospheric pressure
and water density are required. For dive computers that do not have
those values available, libdivecomputer uses a default value. With the
new public api functions, applications can adjust those default values.
Some dive computers already provided a backend specific calibration
function. Those functions are now deprecated. They are kept around to
maintain backwards compatibility for now, but they will be removed in
the next version.
The Sherwood Sage appears to be very similar to the Aeris A300CS. For
the BLE communication the handshake fails and is disabled.
Reported-By: Nick Shore <support@mac-dive.com>
It's exactly the same as the regular i200, but has a new version number
and string.
Tested-by: Tiago Thedim Dias <tiagotsoc@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A small typo introduced with the Tusa Talis support in commit
b188c414206daaa5b6de464ced98d78f6da7cde1 accidentally disabled the tank
pressure reporting for all models.
It appears that the Aqualung i770R looks almost the same as the Pro Plus
X, but has an additional pO2 field for each gas by the O2 field, which
impacts the offset calculations.
The Oceanic Pro Plus X is quite different from the previous models. The
profile data is now stored in a dedicated memory area, and hence there
are a few important differences:
Reading data from the new profile memory area is done with a new F6
command. This new command is very similar to the existing B8 command,
but accesses a completely different memory area. In order to integrate
those two memory areas as transparantly as possible into the existing
infrastructure, a virtual memory space is introduced. The lower part of
the virtual memory is mapped onto the main memory area, while the upper
part is mapped onto the new profile memory area.
The page size of the new profile memory area also increased from 16 to
256 bytes. If the profile size is not an exact multiple of 256 bytes,
the dive computer pads the profile data with 0xFF bytes.
The other changes are the usual Oceanic device specific changes.
Allthough most dive computers always use local time and don't support
timezones at all, there are a few exceptions. There are two different
sources of timezone information:
- Some of the newer Uwatec/Scubapro devices use UTC internally and also
support a timezone setting. This UTC offset is currently taken into
account to obtain the dive date/time, but the UTC offset itself is
lost.
- Uwatec/Scubapro and Reefnet devices rely on the clock of the host
system to synchronize the internal device clock and calculate the
dive date/time. The consequence is that the resulting date/time is
always in the timezone of the host system.
In order to preserve this timezone information, the dc_datetime_t
structure is extended with a new "timezone" field, containing the UTC
offset in seconds. Devices without timezone support will set the field
to the special value DC_TIMEZONE_NONE.
The dc_datetime_localtime() and dc_datetime_gmtime() functions will
automatically populate the new field with respectively the local
timezone offset and zero. The dc_datetime_mktime() function will take
into account the new timezone field for the conversion to UTC. The
special value DC_TIMEZONE_NONE is interpreted as zero.
The vendor_product_parser_create() and vendor_product_device_open()
functions should be called indirectly, through the generic
dc_device_open() and dc_parser_new() functions. And the
vendor_product_extract_dives() functions are internal functions that
should never have been part of the public api in the first place.
The Aqualung i450T appears to ignore the fixed sample rate and instead
store a timestamp in each sample.
The presence of the surface samples in combination with this timestamp
based format is odd. Even the official Diverlog software is confused:
the Windows versions seems to ignore them, but the Mac version takes
them into account.
After the previous commit, the raw data is now reported with one large
vendor sample. Because that makes the data more difficult to interpret
(for example during debugging), a small helper function is added to
split the data again in multiple vendor samples.
Originally, the time and vendor sample values are emitted immediately
after the previous sample is complete. This is now postponed until all
raw samples are available.
This will be required for the Aqualung i450t. That model appears to
ignore the fixed sample rate and instead store a timestamp in each
sample. That means the timestamp is only available once the last raw
sample data has been reached.
Skipping the extra samples by increasing the length is not always
reliable. If there are empty samples present, they will get skipped
instead of the real samples. And if the number of samples isn't an exact
multiple of the samplerate, we're accessing data beyond the end of the
dive profile.