Merge branch 'ostc3-firmware'

This commit is contained in:
Jef Driesen 2014-12-21 15:48:02 +01:00
commit f941af8d25
10 changed files with 1215 additions and 34 deletions

View File

@ -19,10 +19,10 @@
* MA 02110-1301 USA
*/
#include <stdio.h> // fopen, fwrite, fclose
#include <stdlib.h>
#include <string.h>
#include <libdivecomputer/hw_ostc.h>
#include <libdivecomputer/hw_ostc3.h>
#include "utils.h"
#include "common.h"
@ -44,17 +44,23 @@ event_cb (dc_device_t *device, dc_event_type_t event, const void *data, void *us
}
static dc_status_t
fwupdate (const char *name, const char *hexfile)
fwupdate (const char *name, const char *hexfile, int ostc3)
{
dc_context_t *context = NULL;
dc_device_t *device = NULL;
dc_status_t rc = DC_STATUS_SUCCESS;
dc_context_new (&context);
dc_context_set_loglevel (context, DC_LOGLEVEL_ALL);
dc_context_set_logfunc (context, logfunc, NULL);
message ("hw_ostc_device_open\n");
dc_status_t rc = hw_ostc_device_open (&device, context, name);
if (ostc3) {
message ("hw_ostc3_device_open\n");
rc = hw_ostc3_device_open (&device, context, name);
} else {
message ("hw_ostc_device_open\n");
rc = hw_ostc_device_open (&device, context, name);
}
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error opening serial port.");
dc_context_free (context);
@ -70,8 +76,13 @@ fwupdate (const char *name, const char *hexfile)
return rc;
}
message ("hw_ostc_device_fwupdate\n");
rc = hw_ostc_device_fwupdate (device, hexfile);
if (ostc3) {
message ("hw_ostc3_device_fwupdate\n");
rc = hw_ostc3_device_fwupdate (device, hexfile);
} else {
message ("hw_ostc_device_fwupdate\n");
rc = hw_ostc_device_fwupdate (device, hexfile);
}
if (rc != DC_STATUS_SUCCESS) {
WARNING ("Error flashing firmware.");
dc_device_close (device);
@ -103,6 +114,7 @@ int main(int argc, char *argv[])
const char* name = "/dev/ttyUSB0";
#endif
const char *hexfile = NULL;
int ostc3 = 0;
if (argc > 1) {
name = argv[1];
@ -110,11 +122,18 @@ int main(int argc, char *argv[])
if (argc > 2) {
hexfile = argv[2];
}
if (argc > 3) {
if (strcmp(argv[3], "-3") == 0) {
ostc3 = 1;
} else {
ostc3 = 0;
}
}
message ("DEVICE=%s\n", name);
message ("HEXFILE=%s\n", hexfile);
dc_status_t a = fwupdate (name, hexfile);
dc_status_t a = fwupdate (name, hexfile, ostc3);
message ("SUMMARY\n");
message ("-------\n");

View File

@ -58,6 +58,9 @@ hw_ostc3_device_config_write (dc_device_t *abstract, unsigned int config, const
dc_status_t
hw_ostc3_device_config_reset (dc_device_t *abstract);
dc_status_t
hw_ostc3_device_fwupdate (dc_device_t *abstract, const char *filename);
#ifdef __cplusplus
}
#endif /* __cplusplus */

View File

@ -178,6 +178,10 @@
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath="..\src\aes.c"
>
</File>
<File
RelativePath="..\src\array.c"
>
@ -476,6 +480,10 @@
Filter="h;hpp;hxx;hm;inl;inc;xsd"
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
>
<File
RelativePath="..\src\aes.h"
>
</File>
<File
RelativePath="..\src\array.h"
>

View File

@ -44,6 +44,7 @@ libdivecomputer_la_SOURCES = \
ihex.h ihex.c \
hw_ostc.c hw_ostc_parser.c \
hw_frog.c \
aes.h aes.c \
hw_ostc3.c \
cressi_edy.c cressi_edy_parser.c \
cressi_leonardo.c cressi_leonardo_parser.c \

589
src/aes.c Normal file
View File

@ -0,0 +1,589 @@
/*
This is an implementation of the AES128 algorithm, specifically ECB and CBC mode.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <string.h> // CBC mode, for memset
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
// The number of 32 bit words in a key.
#define Nk 4
// Key length in bytes [128 bit]
#define KEYLEN 16
// The number of rounds in AES Cipher.
#define Nr 10
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES128-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
typedef struct aes_state_t {
state_t* state;
// The array that stores the round keys.
uint8_t RoundKey[176];
// The Key input to the AES Program
const uint8_t* Key;
#if defined(CBC) && CBC
// Initial Vector used only for CBC mode
uint8_t* Iv;
#endif
} aes_state_t;
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] =
{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
// The round constant word array, Rcon[i], contains the values given by
// x to th e power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
// Note that i starts at 1, not 0).
static const uint8_t Rcon[255] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39,
0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef,
0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b,
0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94,
0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f,
0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63,
0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd,
0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb };
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(aes_state_t *state)
{
uint32_t i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for(i = 0; i < Nk; ++i)
{
state->RoundKey[(i * 4) + 0] = state->Key[(i * 4) + 0];
state->RoundKey[(i * 4) + 1] = state->Key[(i * 4) + 1];
state->RoundKey[(i * 4) + 2] = state->Key[(i * 4) + 2];
state->RoundKey[(i * 4) + 3] = state->Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for(; (i < (Nb * (Nr + 1))); ++i)
{
for(j = 0; j < 4; ++j)
{
tempa[j]=state->RoundKey[(i-1) * 4 + j];
}
if (i % Nk == 0)
{
// This function rotates the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
k = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = k;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
else if (Nk > 6 && i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
state->RoundKey[i * 4 + 0] = state->RoundKey[(i - Nk) * 4 + 0] ^ tempa[0];
state->RoundKey[i * 4 + 1] = state->RoundKey[(i - Nk) * 4 + 1] ^ tempa[1];
state->RoundKey[i * 4 + 2] = state->RoundKey[(i - Nk) * 4 + 2] ^ tempa[2];
state->RoundKey[i * 4 + 3] = state->RoundKey[(i - Nk) * 4 + 3] ^ tempa[3];
}
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(aes_state_t *state, uint8_t round)
{
uint8_t i,j;
for(i=0;i<4;++i)
{
for(j = 0; j < 4; ++j)
{
(*state->state)[i][j] ^= state->RoundKey[round * Nb * 4 + i * Nb + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(aes_state_t *state)
{
uint8_t i, j;
for(i = 0; i < 4; ++i)
{
for(j = 0; j < 4; ++j)
{
(*state->state)[j][i] = getSBoxValue((*state->state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(aes_state_t *state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state->state)[0][1];
(*state->state)[0][1] = (*state->state)[1][1];
(*state->state)[1][1] = (*state->state)[2][1];
(*state->state)[2][1] = (*state->state)[3][1];
(*state->state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state->state)[0][2];
(*state->state)[0][2] = (*state->state)[2][2];
(*state->state)[2][2] = temp;
temp = (*state->state)[1][2];
(*state->state)[1][2] = (*state->state)[3][2];
(*state->state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state->state)[0][3];
(*state->state)[0][3] = (*state->state)[3][3];
(*state->state)[3][3] = (*state->state)[2][3];
(*state->state)[2][3] = (*state->state)[1][3];
(*state->state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(aes_state_t *state)
{
uint8_t i;
uint8_t Tmp,Tm,t;
for(i = 0; i < 4; ++i)
{
t = (*state->state)[i][0];
Tmp = (*state->state)[i][0] ^ (*state->state)[i][1] ^ (*state->state)[i][2] ^ (*state->state)[i][3] ;
Tm = (*state->state)[i][0] ^ (*state->state)[i][1] ; Tm = xtime(Tm); (*state->state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state->state)[i][1] ^ (*state->state)[i][2] ; Tm = xtime(Tm); (*state->state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state->state)[i][2] ^ (*state->state)[i][3] ; Tm = xtime(Tm); (*state->state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state->state)[i][3] ^ t ; Tm = xtime(Tm); (*state->state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))));
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(aes_state_t *state)
{
int i;
uint8_t a,b,c,d;
for(i=0;i<4;++i)
{
a = (*state->state)[i][0];
b = (*state->state)[i][1];
c = (*state->state)[i][2];
d = (*state->state)[i][3];
(*state->state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state->state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state->state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state->state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(aes_state_t *state)
{
uint8_t i,j;
for(i=0;i<4;++i)
{
for(j=0;j<4;++j)
{
(*state->state)[j][i] = getSBoxInvert((*state->state)[j][i]);
}
}
}
static void InvShiftRows(aes_state_t *state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp=(*state->state)[3][1];
(*state->state)[3][1]=(*state->state)[2][1];
(*state->state)[2][1]=(*state->state)[1][1];
(*state->state)[1][1]=(*state->state)[0][1];
(*state->state)[0][1]=temp;
// Rotate second row 2 columns to right
temp=(*state->state)[0][2];
(*state->state)[0][2]=(*state->state)[2][2];
(*state->state)[2][2]=temp;
temp=(*state->state)[1][2];
(*state->state)[1][2]=(*state->state)[3][2];
(*state->state)[3][2]=temp;
// Rotate third row 3 columns to right
temp=(*state->state)[0][3];
(*state->state)[0][3]=(*state->state)[1][3];
(*state->state)[1][3]=(*state->state)[2][3];
(*state->state)[2][3]=(*state->state)[3][3];
(*state->state)[3][3]=temp;
}
// Cipher is the main function that encrypts the PlainText.
static void Cipher(aes_state_t *state)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(state, 0);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round = 1; round < Nr; ++round)
{
SubBytes(state);
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, round);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, Nr);
}
static void InvCipher(aes_state_t *state)
{
uint8_t round=0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(state, Nr);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr-1 rounds are executed in the loop below.
for(round=Nr-1;round>0;round--)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, round);
InvMixColumns(state);
}
// The last round is given below.
// The MixColumns function is not here in the last round.
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(state, 0);
}
static void BlockCopy(uint8_t* output, uint8_t* input)
{
uint8_t i;
for (i=0;i<KEYLEN;++i)
{
output[i] = input[i];
}
}
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && ECB
void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t* output)
{
aes_state_t state;
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state.state = (state_t*)output;
state.Key = key;
KeyExpansion(&state);
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher(&state);
}
void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output)
{
aes_state_t state;
// Copy input to output, and work in-memory on output
BlockCopy(output, input);
state.state = (state_t*)output;
// The KeyExpansion routine must be called before encryption.
state.Key = key;
KeyExpansion(&state);
InvCipher(&state);
}
#endif // #if defined(ECB) && ECB
#if defined(CBC) && CBC
static void XorWithIv(aes_state_t *state, uint8_t* buf)
{
uint8_t i;
for(i = 0; i < KEYLEN; ++i)
{
buf[i] ^= state->Iv[i];
}
}
void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{
intptr_t i;
uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */
aes_state_t state;
BlockCopy(output, input);
state.state = (state_t*)output;
// Skip the key expansion if key is passed as 0
if(0 != key)
{
state.Key = key;
KeyExpansion(&state);
}
if(iv != 0)
{
state.Iv = (uint8_t*)iv;
}
for(i = 0; i < length; i += KEYLEN)
{
XorWithIv(&state, input);
BlockCopy(output, input);
state.state = (state_t*)output;
Cipher(&state);
state.Iv = output;
input += KEYLEN;
output += KEYLEN;
}
if(remainders)
{
BlockCopy(output, input);
memset(output + remainders, 0, KEYLEN - remainders); /* add 0-padding */
state.state = (state_t*)output;
Cipher(&state);
}
}
void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv)
{
intptr_t i;
uint8_t remainders = length % KEYLEN; /* Remaining bytes in the last non-full block */
aes_state_t state;
BlockCopy(output, input);
state.state = (state_t*)output;
// Skip the key expansion if key is passed as 0
if(0 != key)
{
state.Key = key;
KeyExpansion(&state);
}
// If iv is passed as 0, we continue to encrypt without re-setting the Iv
if(iv != 0)
{
state.Iv = (uint8_t*)iv;
}
for(i = 0; i < length; i += KEYLEN)
{
BlockCopy(output, input);
state.state = (state_t*)output;
InvCipher(&state);
XorWithIv(&state, output);
state.Iv = input;
input += KEYLEN;
output += KEYLEN;
}
if(remainders)
{
BlockCopy(output, input);
memset(output+remainders, 0, KEYLEN - remainders); /* add 0-padding */
state.state = (state_t*)output;
InvCipher(&state);
}
}
#endif // #if defined(CBC) && CBC

45
src/aes.h Normal file
View File

@ -0,0 +1,45 @@
#ifndef _AES_H_
#define _AES_H_
#ifdef _MSC_VER
typedef unsigned char uint8_t;
typedef unsigned int uint32_t;
#else
#include <stdint.h>
#endif
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES128 encryption in CBC-mode of operation and handles 0-padding.
// ECB enables the basic ECB 16-byte block algorithm. Both can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#if defined(ECB) && ECB
void AES128_ECB_encrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
void AES128_ECB_decrypt(uint8_t* input, const uint8_t* key, uint8_t *output);
#endif // #if defined(ECB) && ECB
#if defined(CBC) && CBC
void AES128_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
void AES128_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv);
#endif // #if defined(CBC) && CBC
#endif //_AES_H_

View File

@ -161,6 +161,16 @@ array_uint32_le (const unsigned char data[])
}
void
array_uint32_le_set (unsigned char data[], const unsigned int input)
{
data[0] = input & 0xFF;
data[1] = (input >> 8) & 0xFF;
data[2] = (input >> 16) & 0xFF;
data[3] = (input >> 24) & 0xFF;
}
unsigned int
array_uint24_be (const unsigned char data[])
{
@ -168,6 +178,15 @@ array_uint24_be (const unsigned char data[])
}
void
array_uint24_be_set (unsigned char data[], const unsigned int input)
{
data[0] = (input >> 16) & 0xFF;
data[1] = (input >> 8) & 0xFF;
data[2] = input & 0xFF;
}
unsigned int
array_uint24_le (const unsigned char data[])
{

View File

@ -55,9 +55,15 @@ array_uint32_be (const unsigned char data[]);
unsigned int
array_uint32_le (const unsigned char data[]);
void
array_uint32_le_set (unsigned char data[], const unsigned int input);
unsigned int
array_uint24_be (const unsigned char data[]);
void
array_uint24_be_set (unsigned char data[], const unsigned int input);
unsigned int
array_uint24_le (const unsigned char data[]);

View File

@ -2,6 +2,7 @@
* libdivecomputer
*
* Copyright (C) 2013 Jef Driesen
* Copyright (C) 2014 Anton Lundin
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
@ -21,15 +22,19 @@
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <stdio.h> // FILE, fopen
#include <libdivecomputer/hw_ostc3.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "ringbuffer.h"
#include "array.h"
#include "aes.h"
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
#define ISINSTANCE(device) dc_device_isinstance((device), &hw_ostc3_device_vtable)
@ -43,11 +48,19 @@
#define SZ_VERSION (SZ_CUSTOMTEXT + 4)
#define SZ_MEMORY 0x200000
#define SZ_CONFIG 4
#define SZ_FIRMWARE 0x01E000 // 120KB
#define SZ_FIRMWARE_BLOCK 0x1000 // 4KB
#define FIRMWARE_AREA 0x3E0000
#define RB_LOGBOOK_SIZE 256
#define RB_LOGBOOK_COUNT 256
#define S_BLOCK_READ 0x20
#define S_BLOCK_WRITE 0x30
#define S_ERASE 0x42
#define S_READY 0x4C
#define READY 0x4D
#define S_UPGRADE 0x50
#define HEADER 0x61
#define CLOCK 0x62
#define CUSTOMTEXT 0x63
@ -60,12 +73,35 @@
#define INIT 0xBB
#define EXIT 0xFF
typedef enum hw_ostc3_state_t {
OPEN,
DOWNLOAD,
SERVICE,
REBOOTING,
} hw_ostc3_state_t;
typedef struct hw_ostc3_device_t {
dc_device_t base;
serial_t *port;
unsigned char fingerprint[5];
hw_ostc3_state_t state;
} hw_ostc3_device_t;
typedef struct hw_ostc3_firmware_t {
unsigned char data[SZ_FIRMWARE];
unsigned int checksum;
} hw_ostc3_firmware_t;
// This key is used both for the Ostc3 and its cousin,
// the Ostc Sport.
// The Frog uses a similar protocol, and with another key.
static const unsigned char ostc3_key[16] = {
0xF1, 0xE9, 0xB0, 0x30,
0x45, 0x6F, 0xBE, 0x55,
0xFF, 0xE7, 0xF8, 0x31,
0x13, 0x6C, 0xF2, 0xFE
};
static dc_status_t hw_ostc3_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t hw_ostc3_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t hw_ostc3_device_close (dc_device_t *abstract);
@ -181,6 +217,7 @@ hw_ostc3_transfer (hw_ostc3_device_t *device,
if (cmd != EXIT) {
// Read the ready byte.
unsigned char ready[1] = {0};
unsigned char expected = (device->state == SERVICE ? S_READY : READY);
n = serial_read (device->port, ready, sizeof (ready));
if (n != sizeof (ready)) {
ERROR (abstract->context, "Failed to receive the ready byte.");
@ -188,7 +225,7 @@ hw_ostc3_transfer (hw_ostc3_device_t *device,
}
// Verify the ready byte.
if (ready[0] != READY) {
if (ready[0] != expected) {
ERROR (abstract->context, "Unexpected ready byte.");
return DC_STATUS_PROTOCOL;
}
@ -247,14 +284,7 @@ hw_ostc3_device_open (dc_device_t **out, dc_context_t *context, const char *name
serial_sleep (device->port, 300);
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Send the init command.
dc_status_t status = hw_ostc3_transfer (device, NULL, INIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to send the command.");
serial_close (device->port);
free (device);
return status;
}
device->state = OPEN;
*out = (dc_device_t *) device;
@ -262,18 +292,112 @@ hw_ostc3_device_open (dc_device_t **out, dc_context_t *context, const char *name
}
static dc_status_t
hw_ostc3_device_init_download (hw_ostc3_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_context_t *context = (abstract ? abstract->context : NULL);
// Send the init command.
dc_status_t status = hw_ostc3_transfer (device, NULL, INIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to send the command.");
return status;
}
device->state = DOWNLOAD;
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc3_device_init_service (hw_ostc3_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_context_t *context = (abstract ? abstract->context : NULL);
unsigned char command[] = {0xAA, 0xAB, 0xCD, 0xEF};
unsigned char output[5];
int n = 0;
// We cant use hw_ostc3_transfer here, due to the different echos
n = serial_write (device->port, command, sizeof (command));
if (n != sizeof (command)) {
ERROR (context, "Failed to send the command.");
return EXITCODE (n);
}
// Give the device some time to enter service mode
serial_sleep (device->port, 100);
// Read the response
n = serial_read (device->port, output, sizeof (output));
if (n != sizeof (output)) {
ERROR (context, "Failed to receive the echo.");
return EXITCODE (n);
}
// Verify the response to service mode
if (output[0] != 0x4B || output[1] != 0xAB ||
output[2] != 0xCD || output[3] != 0xEF ||
output[4] != S_READY) {
ERROR (context, "Failed to verify echo.");
return DC_STATUS_IO;
}
device->state = SERVICE;
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc3_device_init (hw_ostc3_device_t *device, hw_ostc3_state_t state)
{
dc_status_t rc = DC_STATUS_SUCCESS;
if (device->state == state) {
// No change.
rc = DC_STATUS_SUCCESS;
} else if (device->state == OPEN) {
// Change to download or service mode.
if (state == DOWNLOAD) {
rc = hw_ostc3_device_init_download(device);
} else if (state == SERVICE) {
rc = hw_ostc3_device_init_service(device);
} else {
rc = DC_STATUS_INVALIDARGS;
}
} else if (device->state == SERVICE && state == DOWNLOAD) {
// Switching between service and download mode is not possible.
// But in service mode, all download commands are supported too,
// so there is no need to change the state.
rc = DC_STATUS_SUCCESS;
} else {
// Not supported.
rc = DC_STATUS_INVALIDARGS;
}
return rc;
}
static dc_status_t
hw_ostc3_device_close (dc_device_t *abstract)
{
hw_ostc3_device_t *device = (hw_ostc3_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Send the exit command.
dc_status_t status = hw_ostc3_transfer (device, NULL, EXIT, NULL, 0, NULL, 0);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
serial_close (device->port);
free (device);
return status;
// Send the exit command
if (device->state == DOWNLOAD || device->state == SERVICE) {
rc = hw_ostc3_transfer (device, NULL, EXIT, NULL, 0, NULL, 0);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
serial_close (device->port);
free (device);
return rc;
}
}
// Close the device.
@ -317,8 +441,12 @@ hw_ostc3_device_version (dc_device_t *abstract, unsigned char data[], unsigned i
if (size != SZ_VERSION)
return DC_STATUS_INVALIDARGS;
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
dc_status_t rc = hw_ostc3_transfer (device, NULL, IDENTITY, NULL, 0, data, size);
rc = hw_ostc3_transfer (device, NULL, IDENTITY, NULL, 0, data, size);
if (rc != DC_STATUS_SUCCESS)
return rc;
@ -336,9 +464,13 @@ hw_ostc3_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, voi
progress.maximum = (RB_LOGBOOK_SIZE * RB_LOGBOOK_COUNT) + SZ_MEMORY;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Download the version data.
unsigned char id[SZ_VERSION] = {0};
dc_status_t rc = hw_ostc3_device_version (abstract, id, sizeof (id));
rc = hw_ostc3_device_version (abstract, id, sizeof (id));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the version.");
return rc;
@ -503,11 +635,15 @@ hw_ostc3_device_clock (dc_device_t *abstract, const dc_datetime_t *datetime)
return DC_STATUS_INVALIDARGS;
}
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
unsigned char packet[6] = {
datetime->hour, datetime->minute, datetime->second,
datetime->month, datetime->day, datetime->year - 2000};
dc_status_t rc = hw_ostc3_transfer (device, NULL, CLOCK, packet, sizeof (packet), NULL, 0);
rc = hw_ostc3_transfer (device, NULL, CLOCK, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
@ -530,8 +666,12 @@ hw_ostc3_device_display (dc_device_t *abstract, const char *text)
return DC_STATUS_INVALIDARGS;
}
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
dc_status_t rc = hw_ostc3_transfer (device, NULL, DISPLAY, packet, sizeof (packet), NULL, 0);
rc = hw_ostc3_transfer (device, NULL, DISPLAY, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
@ -554,8 +694,12 @@ hw_ostc3_device_customtext (dc_device_t *abstract, const char *text)
return DC_STATUS_INVALIDARGS;
}
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
dc_status_t rc = hw_ostc3_transfer (device, NULL, CUSTOMTEXT, packet, sizeof (packet), NULL, 0);
rc = hw_ostc3_transfer (device, NULL, CUSTOMTEXT, packet, sizeof (packet), NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
@ -575,9 +719,13 @@ hw_ostc3_device_config_read (dc_device_t *abstract, unsigned int config, unsigne
return DC_STATUS_INVALIDARGS;
}
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
unsigned char command[1] = {config};
dc_status_t rc = hw_ostc3_transfer (device, NULL, READ, command, sizeof (command), data, size);
rc = hw_ostc3_transfer (device, NULL, READ, command, sizeof (command), data, size);
if (rc != DC_STATUS_SUCCESS)
return rc;
@ -597,10 +745,14 @@ hw_ostc3_device_config_write (dc_device_t *abstract, unsigned int config, const
return DC_STATUS_INVALIDARGS;
}
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
unsigned char command[SZ_CONFIG + 1] = {config};
memcpy(command + 1, data, size);
dc_status_t rc = hw_ostc3_transfer (device, NULL, WRITE, command, size + 1, NULL, 0);
rc = hw_ostc3_transfer (device, NULL, WRITE, command, size + 1, NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
@ -615,10 +767,348 @@ hw_ostc3_device_config_reset (dc_device_t *abstract)
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
dc_status_t rc = hw_ostc3_device_init (device, DOWNLOAD);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the command.
dc_status_t rc = hw_ostc3_transfer (device, NULL, RESET, NULL, 0, NULL, 0);
rc = hw_ostc3_transfer (device, NULL, RESET, NULL, 0, NULL, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
// This is a variant of fletcher16 with a 16 bit sum instead of an 8 bit sum,
// and modulo 2^16 instead of 2^16-1
static unsigned int
hw_ostc3_firmware_checksum (hw_ostc3_firmware_t *firmware)
{
unsigned short low = 0;
unsigned short high = 0;
for (unsigned int i = 0; i < SZ_FIRMWARE; i++) {
low += firmware->data[i];
high += low;
}
return (((unsigned int)high) << 16) + low;
}
static dc_status_t
hw_ostc3_firmware_readline (FILE *fp, dc_context_t *context, unsigned int addr, unsigned char data[], unsigned int size)
{
unsigned char ascii[39];
unsigned char faddr_byte[3];
unsigned int faddr = 0;
int n = 0;
if (size > 16) {
ERROR (context, "Invalid arguments.");
return DC_STATUS_INVALIDARGS;
}
// Read the start code.
while (1) {
n = fread (ascii, 1, 1, fp);
if (n != 1) {
ERROR (context, "Failed to read the start code.");
return DC_STATUS_IO;
}
if (ascii[0] == ':')
break;
// Ignore CR and LF characters.
if (ascii[0] != '\n' && ascii[0] != '\r') {
ERROR (context, "Unexpected character (0x%02x).", ascii[0]);
return DC_STATUS_DATAFORMAT;
}
}
// Read the payload.
n = fread (ascii + 1, 1, 6 + size * 2, fp);
if (n != 6 + size * 2) {
ERROR (context, "Failed to read the data.");
return DC_STATUS_IO;
}
// Convert the address to binary representation.
if (array_convert_hex2bin(ascii + 1, 6, faddr_byte, sizeof(faddr_byte)) != 0) {
ERROR (context, "Invalid hexadecimal character.");
return DC_STATUS_DATAFORMAT;
}
// Get the address.
faddr = array_uint24_be (faddr_byte);
if (faddr != addr) {
ERROR (context, "Unexpected address (0x%06x, 0x%06x).", faddr, addr);
return DC_STATUS_DATAFORMAT;
}
// Convert the payload to binary representation.
if (array_convert_hex2bin (ascii + 1 + 6, size * 2, data, size) != 0) {
ERROR (context, "Invalid hexadecimal character.");
return DC_STATUS_DATAFORMAT;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc3_firmware_readfile (hw_ostc3_firmware_t *firmware, dc_context_t *context, const char *filename)
{
dc_status_t rc = DC_STATUS_SUCCESS;
FILE *fp = NULL;
unsigned char iv[16] = {0};
unsigned char tmpbuf[16] = {0};
unsigned char encrypted[16] = {0};
unsigned int bytes = 0, addr = 0;
unsigned char checksum[4];
if (firmware == NULL) {
ERROR (context, "Invalid arguments.");
return DC_STATUS_INVALIDARGS;
}
// Initialize the buffers.
memset (firmware->data, 0xFF, sizeof (firmware->data));
firmware->checksum = 0;
fp = fopen (filename, "rb");
if (fp == NULL) {
ERROR (context, "Failed to open the file.");
return DC_STATUS_IO;
}
rc = hw_ostc3_firmware_readline (fp, context, 0, iv, sizeof(iv));
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to parse header.");
fclose (fp);
return rc;
}
bytes += 16;
// Load the iv for AES-FCB-mode
AES128_ECB_encrypt (iv, ostc3_key, tmpbuf);
for (addr = 0; addr < SZ_FIRMWARE; addr += 16, bytes += 16) {
rc = hw_ostc3_firmware_readline (fp, context, bytes, encrypted, sizeof(encrypted));
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to parse file data.");
fclose (fp);
return rc;
}
// Decrypt AES-FCB data
for (unsigned int i = 0; i < 16; i++)
firmware->data[addr + i] = encrypted[i] ^ tmpbuf[i];
// Run the next round of encryption
AES128_ECB_encrypt (encrypted, ostc3_key, tmpbuf);
}
// This file format contains a tail with the checksum in
rc = hw_ostc3_firmware_readline (fp, context, bytes, checksum, sizeof(checksum));
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to parse file tail.");
fclose (fp);
return rc;
}
fclose (fp);
firmware->checksum = array_uint32_le (checksum);
if (firmware->checksum != hw_ostc3_firmware_checksum (firmware)) {
ERROR (context, "Failed to verify file checksum.");
return DC_STATUS_IO;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc3_firmware_erase (hw_ostc3_device_t *device, unsigned int addr, unsigned int size)
{
// Convert size to number of pages, rounded up.
unsigned char blocks = ((size + SZ_FIRMWARE_BLOCK - 1) / SZ_FIRMWARE_BLOCK);
// Erase just the needed pages.
unsigned char buffer[4];
array_uint24_be_set (buffer, addr);
buffer[3] = blocks;
return hw_ostc3_transfer (device, NULL, S_ERASE, buffer, sizeof (buffer), NULL, 0);
}
static dc_status_t
hw_ostc3_firmware_block_read (hw_ostc3_device_t *device, unsigned int addr, unsigned char block[], unsigned int block_size)
{
unsigned char buffer[6];
array_uint24_be_set (buffer, addr);
array_uint24_be_set (buffer + 3, block_size);
return hw_ostc3_transfer (device, NULL, S_BLOCK_READ, buffer, sizeof (buffer), block, block_size);
}
static dc_status_t
hw_ostc3_firmware_block_write (hw_ostc3_device_t *device, unsigned int addr, unsigned char block[], unsigned int block_size)
{
unsigned char buffer[3 + SZ_FIRMWARE_BLOCK];
// We currenty only support writing max SZ_FIRMWARE_BLOCK sized blocks.
if (block_size > SZ_FIRMWARE_BLOCK)
return DC_STATUS_INVALIDARGS;
array_uint24_be_set (buffer, addr);
memcpy (buffer + 3, block, block_size);
return hw_ostc3_transfer (device, NULL, S_BLOCK_WRITE, buffer, 3 + block_size, NULL, 0);
}
static dc_status_t
hw_ostc3_firmware_upgrade (dc_device_t *abstract, unsigned int checksum)
{
dc_status_t rc = DC_STATUS_SUCCESS;
hw_ostc3_device_t *device = (hw_ostc3_device_t *) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
unsigned char buffer[5];
array_uint32_le_set (buffer, checksum);
// Compute a one byte checksum, so the device can validate the firmware image.
buffer[4] = 0x55;
for (unsigned int i = 0; i < 4; i++) {
buffer[4] ^= buffer[i];
buffer[4] = (buffer[4]<<1 | buffer[4]>>7);
}
rc = hw_ostc3_transfer (device, NULL, S_UPGRADE, buffer, sizeof (buffer), NULL, 0);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to send flash firmware command");
return rc;
}
// Now the device resets, and if everything is well, it reprograms.
device->state = REBOOTING;
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_ostc3_device_fwupdate (dc_device_t *abstract, const char *filename)
{
dc_status_t rc = DC_STATUS_SUCCESS;
hw_ostc3_device_t *device = (hw_ostc3_device_t *) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// load, erase, upload FZ, verify FZ, reprogram
progress.maximum = 3 + SZ_FIRMWARE * 2 / SZ_FIRMWARE_BLOCK;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Allocate memory for the firmware data.
hw_ostc3_firmware_t *firmware = (hw_ostc3_firmware_t *) malloc (sizeof (hw_ostc3_firmware_t));
if (firmware == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Read the hex file.
rc = hw_ostc3_firmware_readfile (firmware, context, filename);
if (rc != DC_STATUS_SUCCESS) {
free (firmware);
return rc;
}
// Make sure the device is in service mode
rc = hw_ostc3_device_init (device, SERVICE);
if (rc != DC_STATUS_SUCCESS) {
free (firmware);
return rc;
}
// Device open and firmware loaded
progress.current++;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
hw_ostc3_device_display (abstract, " Erasing FW...");
rc = hw_ostc3_firmware_erase (device, FIRMWARE_AREA, SZ_FIRMWARE);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to erase old firmware");
free (firmware);
return rc;
}
// Memory erased
progress.current++;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
hw_ostc3_device_display (abstract, " Uploading...");
for (unsigned int len = 0; len < SZ_FIRMWARE; len += SZ_FIRMWARE_BLOCK) {
char status[SZ_DISPLAY + 1]; // Status message on the display
snprintf (status, sizeof(status), " Uploading %2d%%", (100 * len) / SZ_FIRMWARE);
hw_ostc3_device_display (abstract, status);
rc = hw_ostc3_firmware_block_write (device, FIRMWARE_AREA + len, firmware->data + len, SZ_FIRMWARE_BLOCK);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to write block to device");
free(firmware);
return rc;
}
// One block uploaded
progress.current++;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
}
hw_ostc3_device_display (abstract, " Verifying...");
for (unsigned int len = 0; len < SZ_FIRMWARE; len += SZ_FIRMWARE_BLOCK) {
unsigned char block[SZ_FIRMWARE_BLOCK];
char status[SZ_DISPLAY + 1]; // Status message on the display
snprintf (status, sizeof(status), " Verifying %2d%%", (100 * len) / SZ_FIRMWARE);
hw_ostc3_device_display (abstract, status);
rc = hw_ostc3_firmware_block_read (device, FIRMWARE_AREA + len, block, sizeof (block));
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to read block.");
free (firmware);
return rc;
}
if (memcmp (firmware->data + len, block, sizeof (block)) != 0) {
ERROR (context, "Failed verify.");
hw_ostc3_device_display (abstract, " Verify FAILED");
free (firmware);
return DC_STATUS_PROTOCOL;
}
// One block verified
progress.current++;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
}
hw_ostc3_device_display (abstract, " Programming...");
rc = hw_ostc3_firmware_upgrade (abstract, firmware->checksum);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to start programing");
free (firmware);
return rc;
}
// Programing done!
progress.current++;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
free (firmware);
// Finished!
return DC_STATUS_SUCCESS;
}

View File

@ -160,6 +160,7 @@ hw_ostc3_device_customtext
hw_ostc3_device_config_read
hw_ostc3_device_config_write
hw_ostc3_device_config_reset
hw_ostc3_device_fwupdate
zeagle_n2ition3_device_open
atomics_cobalt_device_open
atomics_cobalt_device_version