Add support for the Cochran Commander and EMC.

This commit is contained in:
John Van Ostrand 2014-10-07 12:09:31 -04:00 committed by Jef Driesen
parent 280f1871f0
commit 9a4e2b75a5
14 changed files with 1650 additions and 3 deletions

View File

@ -76,6 +76,7 @@ static const backend_table_t g_backends[] = {
{"nitekq", DC_FAMILY_DIVERITE_NITEKQ},
{"aqualand", DC_FAMILY_CITIZEN_AQUALAND},
{"idive", DC_FAMILY_DIVESYSTEM_IDIVE},
{"cochran", DC_FAMILY_COCHRAN_COMMANDER},
};
const char *

View File

@ -53,4 +53,6 @@ libdivecomputer_HEADERS = \
citizen.h \
citizen_aqualand.h \
divesystem.h \
divesystem_idive.h
divesystem_idive.h \
cochran.h \
cochran_commander.h

View File

@ -0,0 +1,27 @@
/*
* libdivecomputer
*
* Copyright (C) 2014 John Van Ostrand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#ifndef COCHRAN_H
#define COCHRAN_H
#include "cochran_commander.h"
#endif /* COCHRAN_H */

View File

@ -0,0 +1,43 @@
/*
* libdivecomputer
*
* Copyright (C) 2014 John Van Ostrand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#ifndef COCHRAN_COMMANDER_H
#define COCHRAN_COMMANDER_H
#include "context.h"
#include "device.h"
#include "parser.h"
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
dc_status_t
cochran_commander_device_open (dc_device_t **device, dc_context_t *context, const char *name);
dc_status_t
cochran_commander_parser_create (dc_parser_t **parser, dc_context_t *context, unsigned int model);
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* COCHRAN_COMMANDER_H */

View File

@ -88,6 +88,8 @@ typedef enum dc_family_t {
DC_FAMILY_CITIZEN_AQUALAND = (12 << 16),
/* DiveSystem */
DC_FAMILY_DIVESYSTEM_IDIVE = (13 << 16),
/* Cochran */
DC_FAMILY_COCHRAN_COMMANDER = (14 << 16),
} dc_family_t;
#ifdef __cplusplus

View File

@ -8,4 +8,5 @@ Description: A library for communication with various dive computers.
Version: @VERSION@
Requires.private: @DEPENDENCIES@
Libs: -L${libdir} -ldivecomputer
Libs.private: -lm
Cflags: -I${includedir}

View File

@ -210,6 +210,14 @@
RelativePath="..\src\citizen_aqualand_parser.c"
>
</File>
<File
RelativePath="..\src\cochran_commander.c"
>
</File>
<File
RelativePath="..\src\cochran_commander_parser.c"
>
</File>
<File
RelativePath="..\src\common.c"
>
@ -524,6 +532,14 @@
RelativePath="..\include\libdivecomputer\citizen_aqualand.h"
>
</File>
<File
RelativePath="..\include\libdivecomputer\cochran.h"
>
</File>
<File
RelativePath="..\include\libdivecomputer\cochran_commander.h"
>
</File>
<File
RelativePath="..\src\common-private.h"
>

View File

@ -3,7 +3,7 @@ AM_CFLAGS = $(LIBUSB_CFLAGS) -DENABLE_DEPRECATED
lib_LTLIBRARIES = libdivecomputer.la
libdivecomputer_la_LIBADD = $(LIBUSB_LIBS)
libdivecomputer_la_LIBADD = $(LIBUSB_LIBS) -lm
libdivecomputer_la_LDFLAGS = \
-version-info $(DC_VERSION_LIBTOOL) \
-no-undefined \
@ -64,7 +64,9 @@ libdivecomputer_la_SOURCES = \
ringbuffer.h ringbuffer.c \
checksum.h checksum.c \
array.h array.c \
buffer.c
buffer.c \
cochran_commander.h cochran_commander.c \
cochran_commander_parser.c
if OS_WIN32
libdivecomputer_la_SOURCES += serial.h serial_win32.c

888
src/cochran_commander.c Normal file
View File

@ -0,0 +1,888 @@
/*
* libdivecomputer
*
* Copyright (C) 2014 John Van Ostrand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy, memcmp
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include <libdivecomputer/cochran.h>
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "array.h"
#define C_ARRAY_SIZE(array) (sizeof (array) / sizeof *(array))
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define COCHRAN_MODEL_COMMANDER_AIR_NITROX 0
#define COCHRAN_MODEL_EMC_14 1
#define COCHRAN_MODEL_EMC_16 2
#define COCHRAN_MODEL_EMC_20 3
typedef enum cochran_endian_t {
ENDIAN_LE,
ENDIAN_BE,
} cochran_endian_t;
typedef struct cochran_commander_model_t {
unsigned char id[8 + 1];
unsigned int model;
} cochran_commander_model_t;
typedef struct cochran_data_t {
unsigned char config[1024];
unsigned char *logbook;
unsigned char *sample;
unsigned short int dive_count;
int fp_dive_num;
unsigned int logbook_size;
unsigned int sample_data_offset;
unsigned int sample_size;
} cochran_data_t;
typedef struct cochran_device_layout_t {
unsigned int model;
unsigned int address_bits;
cochran_endian_t endian;
unsigned int baudrate;
// Config data.
unsigned int cf_dive_count;
unsigned int cf_last_log;
unsigned int cf_last_interdive;
unsigned int cf_serial_number;
// Logbook ringbuffer.
unsigned int rb_logbook_begin;
unsigned int rb_logbook_end;
unsigned int rb_logbook_entry_size;
unsigned int rb_logbook_entry_count;
// Profile ringbuffer.
unsigned int rb_profile_begin;
unsigned int rb_profile_end;
// Profile pointers.
unsigned int pt_profile_pre;
unsigned int pt_profile_begin;
unsigned int pt_profile_end;
} cochran_device_layout_t;
typedef struct cochran_commander_device_t {
dc_device_t base;
serial_t *port;
const cochran_device_layout_t *layout;
unsigned char id[67];
unsigned char fingerprint[6];
} cochran_commander_device_t;
static dc_status_t cochran_commander_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size);
static dc_status_t cochran_commander_device_read (dc_device_t *device, unsigned int address, unsigned char data[], unsigned int size);
static dc_status_t cochran_commander_device_dump (dc_device_t *device, dc_buffer_t *data);
static dc_status_t cochran_commander_device_foreach (dc_device_t *device, dc_dive_callback_t callback, void *userdata);
static dc_status_t cochran_commander_device_close (dc_device_t *device);
static const dc_device_vtable_t cochran_commander_device_vtable = {
sizeof (cochran_commander_device_t),
DC_FAMILY_COCHRAN_COMMANDER,
cochran_commander_device_set_fingerprint,/* set_fingerprint */
cochran_commander_device_read, /* read */
NULL, /* write */
cochran_commander_device_dump, /* dump */
cochran_commander_device_foreach, /* foreach */
cochran_commander_device_close /* close */
};
// Cochran Commander Nitrox
static const cochran_device_layout_t cochran_cmdr_device_layout = {
COCHRAN_MODEL_COMMANDER_AIR_NITROX, // model
24, // address_bits
ENDIAN_BE, // endian
115200, // baudrate
0x046, // cf_dive_count
0x06E, // cf_last_log
0x200, // cf_last_interdive
0x0AA, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
256, // rb_logbook_entry_size
512, // rb_logbook_entry_count
0x00020000, // rb_profile_begin
0x00100000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
128, // pt_profile_end
};
// Cochran EMC-14
static const cochran_device_layout_t cochran_emc14_device_layout = {
COCHRAN_MODEL_EMC_14, // model
32, // address_bits
ENDIAN_LE, // endian
806400, // baudrate
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00020000, // rb_logbook_end
512, // rb_logbook_entry_size
256, // rb_logbook_entry_count
0x00022000, // rb_profile_begin
0x00200000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
};
// Cochran EMC-16
static const cochran_device_layout_t cochran_emc16_device_layout = {
COCHRAN_MODEL_EMC_16, // model
32, // address_bits
ENDIAN_LE, // endian
806400, // baudrate
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00080000, // rb_logbook_end
512, // rb_logbook_entry_size
1024, // rb_logbook_entry_count
0x00094000, // rb_profile_begin
0x00800000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
};
// Cochran EMC-20
static const cochran_device_layout_t cochran_emc20_device_layout = {
COCHRAN_MODEL_EMC_20, // model
32, // address_bits
ENDIAN_LE, // endian
806400, // baudrate
0x0D2, // cf_dive_count
0x13E, // cf_last_log
0x142, // cf_last_interdive
0x1E6, // cf_serial_number
0x00000000, // rb_logbook_begin
0x00080000, // rb_logbook_end
512, // rb_logbook_entry_size
1024, // rb_logbook_entry_count
0x00094000, // rb_profile_begin
0x01000000, // rb_profile_end
30, // pt_profile_pre
6, // pt_profile_begin
256, // pt_profile_end
};
// Determine model descriptor number from model string
static unsigned int
cochran_commander_get_model (cochran_commander_device_t *device)
{
const cochran_commander_model_t models[] = {
{"AM\x11""2212\x02", COCHRAN_MODEL_COMMANDER_AIR_NITROX},
{"AM7303\x8b\x43", COCHRAN_MODEL_EMC_14},
{"AMA315\xC3\xC5", COCHRAN_MODEL_EMC_16},
{"AM2315\xA3\x71", COCHRAN_MODEL_EMC_20},
};
unsigned int model = 0xFFFFFFFF;
for (unsigned int i = 0; i < C_ARRAY_SIZE(models); ++i) {
if (memcmp (device->id + 0x3B, models[i].id, sizeof(models[i].id) - 1) == 0) {
model = models[i].model;
break;
}
}
return model;
}
static dc_status_t
cochran_commander_serial_setup (cochran_commander_device_t *device)
{
// Set the serial communication protocol (9600 8N2, no FC).
int rc = serial_configure (device->port, 9600, 8, SERIAL_PARITY_NONE, 2, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (device->base.context, "Failed to set the terminal attributes.");
return DC_STATUS_IO;
}
// Set the timeout for receiving data (5000 ms).
if (serial_set_timeout (device->port, 5000) == -1) {
ERROR (device->base.context, "Failed to set the timeout.");
return DC_STATUS_IO;
}
// Wake up DC and trigger heartbeat
serial_set_break(device->port, 1);
serial_sleep(device->port, 16);
serial_set_break(device->port, 0);
// Clear old heartbeats
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Wait for heartbeat byte before send
unsigned char answer = 0;
int n = serial_read(device->port, &answer, 1);
if (n != 1) {
ERROR (device->base.context, "Failed to receive device heartbeat.");
return EXITCODE (n);
}
if (answer != 0xAA) {
ERROR (device->base.context, "Received bad hearbeat byte (%02x).", answer);
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_packet (cochran_commander_device_t *device, dc_event_progress_t *progress,
const unsigned char command[], unsigned int csize,
unsigned char answer[], unsigned int asize, int high_speed)
{
dc_device_t *abstract = (dc_device_t *) device;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Send the command to the device, one byte at a time
// If sent all at once the command is ignored. It's like the DC
// has no buffering.
for (unsigned int i = 0; i < csize; i++) {
// Give the DC time to read the character.
if (i) serial_sleep(device->port, 16); // 16 ms
unsigned int n = serial_write(device->port, command + i, 1);
if (n != 1) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
}
if (high_speed) {
// Give the DC time to process the command.
serial_sleep(device->port, 45);
// Rates are odd, like 806400 for the EMC, 115200 for commander
int rc = serial_configure(device->port, device->layout->baudrate, 8, SERIAL_PARITY_NONE, 2, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (abstract->context, "Failed to set the high baud rate.");
return DC_STATUS_IO;
}
}
// Receive the answer from the device.
// Use 1024 byte "packets" so we can display progress.
unsigned int nbytes = 0;
while (nbytes < asize) {
unsigned int len = asize - nbytes;
if (len > 1024)
len = 1024;
int n = serial_read (device->port, answer + nbytes, len);
if (n != len) {
ERROR (abstract->context, "Failed to receive data, expected %u,"
"read %u.",len, n);
return EXITCODE (n);
}
nbytes += n;
if (progress) {
progress->current += n;
device_event_emit (abstract, DC_EVENT_PROGRESS, progress);
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read_id (cochran_commander_device_t *device, unsigned char id[], unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned char command[6] = {0x05, 0x9D, 0xFF, 0x00, 0x43, 0x00};
rc = cochran_commander_packet(device, NULL, command, sizeof(command), id, size, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
if (memcmp(id, "(C)", 3) != 0) {
// It's a Commander, read a different location
command[1] = 0xBD;
command[2] = 0x7F;
rc = cochran_commander_packet(device, NULL, command, sizeof(command), id, size, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read_config (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned char data[], unsigned int size)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t rc = DC_STATUS_SUCCESS;
// Read two 512 byte blocks into one 1024 byte buffer
for (unsigned int i = 0; i < 2; i++) {
const unsigned int len = size / 2;
unsigned char command[2] = {0x96, i};
rc = cochran_commander_packet(device, progress, command, sizeof(command), data + i * len, len, 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
dc_event_vendor_t vendor;
vendor.data = data + i * len;
vendor.size = len;
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_read (cochran_commander_device_t *device, dc_event_progress_t *progress, unsigned int address, unsigned char data[], unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
// Build the command
unsigned char command[10];
unsigned char command_size;
switch (device->layout->address_bits) {
case 32:
// EMC uses 32 bit addressing
command[0] = 0x15;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (address >> 24) & 0xff;
command[5] = (size ) & 0xff;
command[6] = (size >> 8 ) & 0xff;
command[7] = (size >> 16 ) & 0xff;
command[8] = (size >> 24 ) & 0xff;
command[9] = 0x05;
command_size = 10;
break;
case 24:
// Commander uses 24 byte addressing
command[0] = 0x15;
command[1] = (address ) & 0xff;
command[2] = (address >> 8) & 0xff;
command[3] = (address >> 16) & 0xff;
command[4] = (size ) & 0xff;
command[5] = (size >> 8 ) & 0xff;
command[6] = (size >> 16 ) & 0xff;
command[7] = 0x04;
command_size = 8;
break;
default:
return DC_STATUS_UNSUPPORTED;
}
serial_sleep(device->port, 800);
// set back to 9600 baud
rc = cochran_commander_serial_setup(device);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read data at high speed
rc = cochran_commander_packet (device, progress, command, command_size, data, size, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
static void
cochran_commander_find_fingerprint(cochran_commander_device_t *device, cochran_data_t *data)
{
// Skip to fingerprint to reduce time
if (data->dive_count < device->layout->rb_logbook_entry_count)
data->fp_dive_num = data->dive_count;
else
data->fp_dive_num = device->layout->rb_logbook_entry_count;
data->fp_dive_num--;
while (data->fp_dive_num >= 0 && memcmp(device->fingerprint,
data->logbook + data->fp_dive_num * device->layout->rb_logbook_entry_size,
sizeof(device->fingerprint)))
data->fp_dive_num--;
}
static void
cochran_commander_get_sample_parms(cochran_commander_device_t *device, cochran_data_t *data)
{
dc_device_t *abstract = (dc_device_t *) device;
unsigned int pre_dive_offset = 0, end_dive_offset = 0;
unsigned int dive_count = 0;
if (data->dive_count < device->layout->rb_logbook_entry_count)
dive_count = data->dive_count;
else
dive_count = device->layout->rb_logbook_entry_count;
// Find lowest and highest offsets into sample data
unsigned int low_offset = 0xFFFFFFFF;
unsigned int high_offset = 0;
for (int i = data->fp_dive_num + 1; i < dive_count; i++) {
pre_dive_offset = array_uint32_le (data->logbook + i * device->layout->rb_logbook_entry_size
+ device->layout->pt_profile_pre);
end_dive_offset = array_uint32_le (data->logbook + i * device->layout->rb_logbook_entry_size
+ device->layout->pt_profile_end);
// Validate offsets, allow 0xFFFFFFF for end_dive_offset
// because we handle that as a special case.
if (pre_dive_offset < device->layout->rb_profile_begin ||
pre_dive_offset > device->layout->rb_profile_end) {
ERROR(abstract->context, "Invalid pre-dive offset (%08x) on dive %d.", pre_dive_offset, i);
continue;
}
if (end_dive_offset < device->layout->rb_profile_begin ||
(end_dive_offset > device->layout->rb_profile_end &&
end_dive_offset != 0xFFFFFFFF)) {
ERROR(abstract->context, "Invalid end-dive offset (%08x) on dive %d.", end_dive_offset, i);
continue;
}
// Check for ring buffer wrap-around.
if (pre_dive_offset > end_dive_offset)
break;
if (pre_dive_offset < low_offset)
low_offset = pre_dive_offset;
if (end_dive_offset > high_offset && end_dive_offset != 0xFFFFFFFF )
high_offset = end_dive_offset;
}
if (pre_dive_offset > end_dive_offset) {
high_offset = device->layout->rb_profile_end;
low_offset = device->layout->rb_profile_begin;
data->sample_data_offset = low_offset;
data->sample_size = high_offset - low_offset;
} else if (low_offset < 0xFFFFFFFF && high_offset > 0) {
data->sample_data_offset = low_offset;
data->sample_size = high_offset - data->sample_data_offset;
} else {
data->sample_data_offset = 0;
data->sample_size = 0;
}
}
/*
* For corrupt dives the end-of-samples pointer is 0xFFFFFFFF
* search for a reasonable size, e.g. using next dive start sample
* or end-of-samples to limit searching for recoverable samples
*/
static unsigned int
cochran_commander_guess_sample_end_address(cochran_commander_device_t *device, cochran_data_t *data, unsigned int log_num)
{
const unsigned char *log_entry = data->logbook + device->layout->rb_logbook_entry_size * log_num;
if (log_num == data->dive_count)
// Return next usable address from config page
return array_uint32_le(data->config + device->layout->rb_profile_end);
// Next log's start address
return array_uint32_le(log_entry + device->layout->rb_logbook_entry_size + device->layout->pt_profile_begin);
}
static dc_status_t
cochran_commander_read_all (cochran_commander_device_t *device, cochran_data_t *data)
{
dc_device_t *abstract = (dc_device_t *) device;
dc_status_t rc = DC_STATUS_SUCCESS;
// Calculate max data sizes
unsigned int max_config = sizeof(data->config);
unsigned int max_logbook = device->layout->rb_logbook_end - device->layout->rb_logbook_begin;
unsigned int max_sample = device->layout->rb_profile_end - device->layout->rb_profile_begin;
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = max_config + max_logbook + max_sample;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit ID block
dc_event_vendor_t vendor;
vendor.data = device->id;
vendor.size = sizeof (device->id);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
// Read config
rc = cochran_commander_read_config(device, &progress, data->config, sizeof(data->config));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Determine size of dive list to read.
if (device->layout->endian == ENDIAN_LE)
data->dive_count = array_uint16_le (data->config + device->layout->cf_dive_count);
else
data->dive_count = array_uint16_be (data->config + device->layout->cf_dive_count);
if (data->dive_count > device->layout->rb_logbook_entry_count) {
data->logbook_size = device->layout->rb_logbook_entry_count * device->layout->rb_logbook_entry_size;
} else {
data->logbook_size = data->dive_count * device->layout->rb_logbook_entry_size;
}
progress.maximum -= max_logbook - data->logbook_size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Allocate space for log book.
data->logbook = (unsigned char *) malloc(data->logbook_size);
if (data->logbook == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Request log book
rc = cochran_commander_read(device, &progress, 0, data->logbook, data->logbook_size);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Determine sample memory to read
cochran_commander_find_fingerprint(device, data);
cochran_commander_get_sample_parms(device, data);
progress.maximum -= max_sample - data->sample_size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
if (data->sample_size > 0) {
data->sample = (unsigned char *) malloc(data->sample_size);
if (data->sample == NULL) {
ERROR (abstract->context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Read the sample data
rc = cochran_commander_read (device, &progress, data->sample_data_offset, data->sample, data->sample_size);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the sample data.");
return rc;
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
cochran_commander_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
cochran_commander_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (cochran_commander_device_t *) dc_device_allocate (context, &cochran_commander_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->port = NULL;
cochran_commander_device_set_fingerprint((dc_device_t *) device, NULL, 0);
// Open the device.
int rc = serial_open (&device->port, device->base.context, name);
if (rc == -1) {
ERROR (device->base.context, "Failed to open the serial port.");
status = DC_STATUS_IO;
goto error_free;
}
status = cochran_commander_serial_setup(device);
if (status != DC_STATUS_SUCCESS) {
goto error_close;
}
// Read ID from the device
status = cochran_commander_read_id (device, device->id, sizeof(device->id));
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Device not responding.");
goto error_close;
}
unsigned int model = cochran_commander_get_model(device);
switch (model) {
case COCHRAN_MODEL_COMMANDER_AIR_NITROX:
device->layout = &cochran_cmdr_device_layout;
break;
case COCHRAN_MODEL_EMC_14:
device->layout = &cochran_emc14_device_layout;
break;
case COCHRAN_MODEL_EMC_16:
device->layout = &cochran_emc16_device_layout;
break;
case COCHRAN_MODEL_EMC_20:
device->layout = &cochran_emc20_device_layout;
break;
default:
ERROR (context, "Unknown model");
status = DC_STATUS_UNSUPPORTED;
goto error_close;
}
*out = (dc_device_t *) device;
return DC_STATUS_SUCCESS;
error_close:
serial_close (device->port);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
cochran_commander_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
dc_status_set_error(&status, DC_STATUS_IO);
}
return status;
}
static dc_status_t
cochran_commander_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0xFF, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_device_read (dc_device_t *abstract, unsigned int address, unsigned char data[], unsigned int size)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
return cochran_commander_read(device, NULL, address, data, size);
}
static dc_status_t
cochran_commander_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned char config[1024];
// Make sure buffer is good.
if (!dc_buffer_clear(buffer)) {
ERROR (abstract->context, "Uninitialized buffer.");
return DC_STATUS_INVALIDARGS;
}
// Reserve space
if (!dc_buffer_resize(buffer, device->layout->rb_profile_end)) {
ERROR(abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Determine size for progress
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = sizeof(config) + device->layout->rb_profile_end;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Emit ID block
dc_event_vendor_t vendor;
vendor.data = device->id;
vendor.size = sizeof (device->id);
device_event_emit (abstract, DC_EVENT_VENDOR, &vendor);
rc = cochran_commander_read_config (device, &progress, config, sizeof(config));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the sample data, from 0 to sample end will include logbook
rc = cochran_commander_read (device, &progress, 0, dc_buffer_get_data(buffer), device->layout->rb_profile_end);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to read the sample data.");
return rc;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
cochran_commander_device_t *device = (cochran_commander_device_t *) abstract;
dc_status_t status = DC_STATUS_SUCCESS;
cochran_data_t data;
data.logbook = NULL;
data.sample = NULL;
status = cochran_commander_read_all (device, &data);
if (status != DC_STATUS_SUCCESS)
goto error;
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = device->layout->model;
devinfo.firmware = 0; // unknown
devinfo.serial = array_uint32_le(data.config + device->layout->cf_serial_number);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
// Calculate profile RB effective head pointer
// Cochran seems to erase 8K chunks so round up.
unsigned int last_start_address = (array_uint32_le(data.config + device->layout->cf_last_interdive) & 0xfffff000) + 0x2000;
if (last_start_address < device->layout->rb_profile_begin || last_start_address > device->layout->rb_profile_end) {
ERROR(abstract->context, "Invalid profile ringbuffer head pointer in Cochran config block.");
status = DC_STATUS_DATAFORMAT;
goto error;
}
// We track profile ringbuffer usage to determine which dives have profile data
int profile_capacity_remaining = device->layout->rb_profile_end - device->layout->rb_profile_begin;
unsigned int dive_count = 0;
if (data.dive_count < device->layout->rb_logbook_entry_count)
dive_count = data.dive_count;
else
dive_count = device->layout->rb_logbook_entry_count;
// Loop through each dive
for (int i = dive_count - 1; i > data.fp_dive_num; i--) {
unsigned char *log_entry = data.logbook + i * device->layout->rb_logbook_entry_size;
unsigned int sample_start_address = array_uint32_le (log_entry + device->layout->pt_profile_begin);
unsigned int sample_end_address = array_uint32_le (log_entry + device->layout->pt_profile_end);
// Validate
if (sample_start_address < device->layout->rb_profile_begin ||
sample_start_address > device->layout->rb_profile_end ||
sample_end_address < device->layout->rb_profile_begin ||
(sample_end_address > device->layout->rb_profile_end &&
sample_end_address != 0xFFFFFFFF)) {
continue;
}
if (sample_end_address == 0xFFFFFFFF)
// Corrupt dive, guess the end address
sample_end_address = cochran_commander_guess_sample_end_address(device, &data, i);
// Determine if sample exists
if (profile_capacity_remaining > 0) {
// Subtract this dive's profile size including post-dive events
profile_capacity_remaining -= (last_start_address - sample_start_address);
// Adjust for a dive that wraps the buffer
if (sample_start_address > last_start_address)
profile_capacity_remaining -= device->layout->rb_profile_end - device->layout->rb_profile_begin;
}
last_start_address = sample_start_address;
unsigned char *sample = NULL;
int sample_size = 0;
if (profile_capacity_remaining < 0) {
// There is no profile for this dive
sample = NULL;
sample_size = 0;
} else {
// Calculate the size of the profile only
sample = data.sample + sample_start_address - data.sample_data_offset;
sample_size = sample_end_address - sample_start_address;
if (sample_size < 0)
// Adjust for ring buffer wrap-around
sample_size += device->layout->rb_profile_end - device->layout->rb_profile_begin;
}
// Build dive blob
unsigned int dive_size = device->layout->rb_logbook_entry_size + sample_size;
unsigned char *dive = (unsigned char *) malloc(dive_size);
if (dive == NULL) {
status = DC_STATUS_NOMEMORY;
goto error;
}
memcpy(dive, log_entry, device->layout->rb_logbook_entry_size); // log
// Copy profile data
if (sample_size) {
if (sample_start_address <= sample_end_address) {
memcpy(dive + device->layout->rb_logbook_entry_size, sample, sample_size);
} else {
// It wrapped the buffer, copy two sections
unsigned int size = device->layout->rb_profile_end - sample_start_address;
memcpy(dive + device->layout->rb_logbook_entry_size, sample, size);
memcpy(dive + device->layout->rb_logbook_entry_size + size,
data.sample, sample_end_address - device->layout->rb_profile_begin);
}
}
if (callback && !callback (dive, dive_size, dive, sizeof(device->fingerprint), userdata)) {
free(dive);
break;
}
free(dive);
}
error:
free(data.logbook);
free(data.sample);
return status;
}

View File

@ -0,0 +1,651 @@
/*
* libdivecomputer
*
* Copyright (C) 2014 John Van Ostrand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <math.h>
#include <libdivecomputer/units.h>
#include <libdivecomputer/cochran.h>
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define C_ARRAY_SIZE(array) (sizeof (array) / sizeof *(array))
#define COCHRAN_MODEL_COMMANDER_AIR_NITROX 0
#define COCHRAN_MODEL_EMC_14 1
#define COCHRAN_MODEL_EMC_16 2
#define COCHRAN_MODEL_EMC_20 3
#define UNSUPPORTED 0xFFFFFFFF
typedef enum cochran_sample_format_t {
SAMPLE_CMDR,
SAMPLE_EMC,
} cochran_sample_format_t;
typedef struct cochran_parser_layout_t {
cochran_sample_format_t format;
unsigned int headersize;
unsigned int samplesize;
unsigned int second, minute, hour, day, month, year;
unsigned int pt_profile_begin;
unsigned int water_conductivity;
unsigned int pt_profile_pre;
unsigned int start_temp;
unsigned int start_depth;
unsigned int dive_number;
unsigned int altitude;
unsigned int pt_profile_end;
unsigned int end_temp;
unsigned int divetime;
unsigned int max_depth;
unsigned int avg_depth;
unsigned int oxygen;
unsigned int helium;
unsigned int min_temp;
unsigned int max_temp;
} cochran_parser_layout_t;
typedef struct cochran_events_t {
unsigned char code;
unsigned int data_bytes;
parser_sample_event_t type;
parser_sample_flags_t flag;
} cochran_events_t;
typedef struct event_size_t {
unsigned int code;
unsigned int size;
} event_size_t;
typedef struct cochran_commander_parser_t {
dc_parser_t base;
unsigned int model;
const cochran_parser_layout_t *layout;
const event_size_t *events;
unsigned int nevents;
} cochran_commander_parser_t ;
static dc_status_t cochran_commander_parser_set_data (dc_parser_t *parser, const unsigned char *data, unsigned int size);
static dc_status_t cochran_commander_parser_get_datetime (dc_parser_t *parser, dc_datetime_t *datetime);
static dc_status_t cochran_commander_parser_get_field (dc_parser_t *parser, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t cochran_commander_parser_samples_foreach (dc_parser_t *parser, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t cochran_commander_parser_vtable = {
sizeof(cochran_commander_parser_t),
DC_FAMILY_COCHRAN_COMMANDER,
cochran_commander_parser_set_data, /* set_data */
cochran_commander_parser_get_datetime, /* datetime */
cochran_commander_parser_get_field, /* fields */
cochran_commander_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
static const cochran_parser_layout_t cochran_cmdr_parser_layout = {
SAMPLE_CMDR, // type
256, // headersize
2, // samplesize
1, 0, 3, 2, 5, 4, // second, minute, hour, day, month, year, 1 byte each
6, // pt_profile_begin, 4 bytes
24, // water_conductivity, 1 byte, 0=low(fresh), 2=high(sea)
30, // pt_profile_pre, 4 bytes
45, // start_temp, 1 byte, F
56, // start_depth, 2 bytes, /4=ft
70, // dive_number, 2 bytes
73, // altitude, 1 byte, /4=kilofeet
128, // pt_profile_end, 4 bytes
153, // end_temp, 1 byte F
166, // divetime, 2 bytes, minutes
168, // max_depth, 2 bytes, /4=ft
170, // avg_depth, 2 bytes, /4=ft
210, // oxygen, 4 bytes (2 of) 2 bytes, /256=%
UNSUPPORTED, // helium, 4 bytes (2 of) 2 bytes, /256=%
232, // min_temp, 1 byte, /2+20=F
233, // max_temp, 1 byte, /2+20=F
};
static const cochran_parser_layout_t cochran_emc_parser_layout = {
SAMPLE_EMC, // type
512, // headersize
3, // samplesize
0, 1, 2, 3, 4, 5, // second, minute, hour, day, month, year, 1 byte each
6, // pt_profile_begin, 4 bytes
24, // water_conductivity, 1 byte 0=low(fresh), 2=high(sea)
30, // pt_profile_pre, 4 bytes
55, // start_temp, 1 byte, F
42, // start_depth, 2 bytes, /256=ft
86, // dive_number, 2 bytes,
89, // altitude, 1 byte /4=kilofeet
256, // pt_profile_end, 4 bytes
293, // end_temp, 1 byte, F
304, // divetime, 2 bytes, minutes
306, // max_depth, 2 bytes, /4=ft
310, // avg_depth, 2 bytes, /4=ft
144, // oxygen, 6 bytes (3 of) 2 bytes, /256=%
164, // helium, 6 bytes (3 of) 2 bytes, /256=%
403, // min_temp, 1 byte, /2+20=F
407, // max_temp, 1 byte, /2+20=F
};
static const cochran_events_t cochran_events[] = {
{0xA8, 1, SAMPLE_EVENT_SURFACE, SAMPLE_FLAGS_BEGIN}, // Entered PDI mode
{0xA9, 1, SAMPLE_EVENT_SURFACE, SAMPLE_FLAGS_END}, // Exited PDI mode
{0xAB, 5, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Ceiling decrease
{0xAD, 5, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Ceiling increase
{0xBD, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switched to nomal PO2 setting
{0xC0, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switched to FO2 21% mode
{0xC1, 1, SAMPLE_EVENT_ASCENT, SAMPLE_FLAGS_BEGIN}, // Ascent rate greater than limit
{0xC2, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Low battery warning
{0xC3, 1, SAMPLE_EVENT_OLF, SAMPLE_FLAGS_NONE}, // CNS Oxygen toxicity warning
{0xC4, 1, SAMPLE_EVENT_MAXDEPTH, SAMPLE_FLAGS_NONE}, // Depth exceeds user set point
{0xC5, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_BEGIN}, // Entered decompression mode
{0xC8, 1, SAMPLE_EVENT_PO2, SAMPLE_FLAGS_BEGIN}, // PO2 too high
{0xCC, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_BEGIN}, // Low Cylinder 1 pressure
{0xCE, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_BEGIN}, // Non-decompression warning
{0xCD, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switched to deco blend
{0xD0, 1, SAMPLE_EVENT_WORKLOAD, SAMPLE_FLAGS_BEGIN}, // Breathing rate alarm
{0xD3, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Low gas 1 flow rate
{0xD6, 1, SAMPLE_EVENT_CEILING, SAMPLE_FLAGS_BEGIN}, // Depth is less than ceiling
{0xD8, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_END}, // End decompression mode
{0xE1, 1, SAMPLE_EVENT_ASCENT, SAMPLE_FLAGS_END}, // End ascent rate warning
{0xE2, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Low SBAT battery warning
{0xE3, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switched to FO2 mode
{0xE5, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switched to PO2 mode
{0xEE, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_END}, // End non-decompresison warning
{0xEF, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switch to blend 2
{0xF0, 1, SAMPLE_EVENT_WORKLOAD, SAMPLE_FLAGS_END}, // Breathing rate alarm
{0xF3, 1, SAMPLE_EVENT_NONE, SAMPLE_FLAGS_NONE}, // Switch to blend 1
{0xF6, 1, SAMPLE_EVENT_CEILING, SAMPLE_FLAGS_END}, // End Depth is less than ceiling
};
static const event_size_t cochran_cmdr_event_bytes[] = {
{0x00, 17}, {0x01, 21}, {0x02, 18},
{0x03, 17}, {0x06, 19}, {0x07, 19},
{0x08, 19}, {0x09, 19}, {0x0a, 19},
{0x0b, 21}, {0x0c, 19}, {0x0d, 19},
{0x0e, 19}, {0x10, 21},
};
static const event_size_t cochran_emc_event_bytes[] = {
{0x00, 19}, {0x01, 23}, {0x02, 20},
{0x03, 19}, {0x06, 21}, {0x07, 21},
{0x0a, 21}, {0x0b, 21}, {0x0f, 19},
{0x10, 21},
};
static unsigned int
cochran_commander_handle_event (cochran_commander_parser_t *parser, unsigned char code, dc_sample_callback_t callback, void *userdata)
{
dc_parser_t *abstract = (dc_parser_t *) parser;
const cochran_events_t *event = NULL;
for (unsigned int i = 0; i < C_ARRAY_SIZE(cochran_events); ++i) {
if (cochran_events[i].code == code) {
event = cochran_events + i;
break;
}
}
if (event == NULL) {
// Unknown event, send warning so we know we missed something
WARNING(abstract->context, "Unknown event 0x%02x", code);
return 1;
}
switch (code) {
case 0xAB: // Ceiling decrease
// Indicated to lower ceiling by 10 ft (deeper)
// Bytes 1-2: first stop duration (min)
// Bytes 3-4: total stop duration (min)
// Handled in calling function
break;
case 0xAD: // Ceiling increase
// Indicates to raise ceiling by 10 ft (shallower)
// Handled in calling function
break;
case 0xC0: // Switched to FO2 21% mode (surface)
// Event seen upon surfacing
// handled in calling function
break;
case 0xCD: // Switched to deco blend
case 0xEF: // Switched to gas blend 2
case 0xF3: // Switched to gas blend 1
// handled in calling function
break;
default:
// Don't send known events of type NONE
if (event->type != SAMPLE_EVENT_NONE) {
dc_sample_value_t sample = {0};
sample.event.type = event->type;
sample.event.time = 0;
sample.event.value = 0;
sample.event.flags = event->flag;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
}
return event->data_bytes;
}
/*
* Used to find the end of a dive that has an incomplete dive-end
* block. It parses backwards past inter-dive events.
*/
static int
cochran_commander_backparse(cochran_commander_parser_t *parser, const unsigned char *samples, int size)
{
int result = size, best_result = size;
for (unsigned int i = 0; i < parser->nevents; i++) {
int ptr = size - parser->events[i].size;
if (ptr > 0 && samples[ptr] == parser->events[i].code) {
// Recurse to find the largest match. Because we are parsing backwards
// and the events vary in size we can't be sure the byte that matches
// the event code is an event code or data from inside a longer or shorter
// event.
result = cochran_commander_backparse(parser, samples, ptr);
}
if (result < best_result) {
best_result = result;
}
}
return best_result;
}
dc_status_t
cochran_commander_parser_create (dc_parser_t **out, dc_context_t *context, unsigned int model)
{
cochran_commander_parser_t *parser = NULL;
dc_status_t status = DC_STATUS_SUCCESS;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
parser = (cochran_commander_parser_t *) dc_parser_allocate (context, &cochran_commander_parser_vtable);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
parser->model = model;
switch (model) {
case COCHRAN_MODEL_COMMANDER_AIR_NITROX:
parser->layout = &cochran_cmdr_parser_layout;
parser->events = cochran_cmdr_event_bytes;
parser->nevents = C_ARRAY_SIZE(cochran_cmdr_event_bytes);
break;
case COCHRAN_MODEL_EMC_14:
case COCHRAN_MODEL_EMC_16:
case COCHRAN_MODEL_EMC_20:
parser->layout = &cochran_emc_parser_layout;
parser->events = cochran_emc_event_bytes;
parser->nevents = C_ARRAY_SIZE(cochran_emc_event_bytes);
break;
default:
status = DC_STATUS_UNSUPPORTED;
goto error_free;
}
*out = (dc_parser_t *) parser;
return DC_STATUS_SUCCESS;
error_free:
dc_parser_deallocate ((dc_parser_t *) parser);
return status;
}
static dc_status_t
cochran_commander_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
cochran_commander_parser_t *parser = (cochran_commander_parser_t *) abstract;
const cochran_parser_layout_t *layout = parser->layout;
const unsigned char *data = abstract->data;
if (abstract->size < layout->headersize)
return DC_STATUS_DATAFORMAT;
if (datetime) {
datetime->second = data[layout->second];
datetime->minute = data[layout->minute];
datetime->hour = data[layout->hour];
datetime->day = data[layout->day];
datetime->month = data[layout->month];
datetime->year = data[layout->year] + (data[layout->year] > 91 ? 1900 : 2000);
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
const cochran_commander_parser_t *parser = (cochran_commander_parser_t *) abstract;
const cochran_parser_layout_t *layout = parser->layout;
const unsigned char *data = abstract->data;
unsigned int minutes = 0, qfeet = 0;
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_salinity_t *water = (dc_salinity_t *) value;
if (abstract->size < layout->headersize)
return DC_STATUS_DATAFORMAT;
if (value) {
switch (type) {
case DC_FIELD_TEMPERATURE_SURFACE:
*((unsigned int*) value) = (data[layout->start_temp] - 32.0) / 1.8;
break;
case DC_FIELD_TEMPERATURE_MINIMUM:
if (data[layout->min_temp] == 0xFF)
return DC_STATUS_UNSUPPORTED;
*((unsigned int*) value) = (data[layout->min_temp] / 2.0 + 20 - 32) / 1.8;
break;
case DC_FIELD_TEMPERATURE_MAXIMUM:
if (data[layout->max_temp] == 0xFF)
return DC_STATUS_UNSUPPORTED;
*((unsigned int*) value) = (data[layout->max_temp] / 2.0 + 20 - 32) / 1.8;
break;
case DC_FIELD_DIVETIME:
minutes = array_uint16_le(data + layout->divetime);
if (minutes == 0xFFFF)
return DC_STATUS_UNSUPPORTED;
*((unsigned int *) value) = minutes * 60;
break;
case DC_FIELD_MAXDEPTH:
qfeet = array_uint16_le(data + layout->max_depth);
if (qfeet == 0xFFFF)
return DC_STATUS_UNSUPPORTED;
*((double *) value) = qfeet / 4.0 * FEET;
break;
case DC_FIELD_AVGDEPTH:
qfeet = array_uint16_le(data + layout->avg_depth);
if (qfeet == 0xFFFF)
return DC_STATUS_UNSUPPORTED;
*((double *) value) = qfeet / 4.0 * FEET;
break;
case DC_FIELD_GASMIX_COUNT:
*((unsigned int *) value) = 2;
break;
case DC_FIELD_GASMIX:
// Gas percentages are decimal and encoded as
// highbyte = integer portion
// lowbyte = decimal portion, divide by 256 to get decimal value
gasmix->oxygen = array_uint16_le (data + layout->oxygen + 2 * flags) / 256.0 / 100;
if (layout->helium == UNSUPPORTED) {
gasmix->helium = 0;
} else {
gasmix->helium = array_uint16_le (data + layout->helium + 2 * flags) / 256.0 / 100;
}
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_SALINITY:
// 0x00 = low conductivity, 0x10 = high, maybe there's a 0x01 and 0x11?
// Assume Cochran's conductivity ranges from 0 to 3
// 0 is fresh water, anything else is sea water
// for density assume
// 0 = 1000kg/m³, 2 = 1025kg/m³
// and other values are linear
if ((data[layout->water_conductivity] & 0x3) == 0)
water->type = DC_WATER_FRESH;
else
water->type = DC_WATER_SALT;
water->density = 1000.0 + 12.5 * (data[layout->water_conductivity] & 0x3);
break;
case DC_FIELD_ATMOSPHERIC:
// Cochran measures air pressure and stores it as altitude.
// Convert altitude (measured in 1/4 kilofeet) back to pressure.
*(double *) value = ATM / BAR * pow(1 - 0.0000225577 * data[layout->altitude] * 250.0 * FEET, 5.25588);
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
cochran_commander_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
cochran_commander_parser_t *parser = (cochran_commander_parser_t *) abstract;
const cochran_parser_layout_t *layout = parser->layout;
const unsigned char *data = abstract->data;
const unsigned char *samples = data + layout->headersize;
const unsigned char *last_sample = NULL;
if (abstract->size < layout->headersize)
return DC_STATUS_DATAFORMAT;
unsigned int size = abstract->size - layout->headersize;
dc_sample_value_t sample = {0};
unsigned int time = 0, last_sample_time = 0;
unsigned int offset = 0;
double start_depth = 0;
int depth = 0;
unsigned int deco_obligation = 0;
unsigned int deco_ceiling = 0;
unsigned int corrupt_dive = 0;
// In rare circumstances Cochran computers won't record the end-of-dive
// log entry block. When the end-sample pointer is 0xFFFFFFFF it's corrupt.
// That means we don't really know where the dive samples end and we don't
// know what the dive summary values are (i.e. max depth, min temp)
if (array_uint32_le(data + layout->pt_profile_end) == 0xFFFFFFFF) {
corrupt_dive = 1;
WARNING(abstract->context, "Incomplete dive on %02d/%02d/%02d at %02d:%02d:%02d, trying to parse samples",
data[layout->year], data[layout->month], data[layout->day],
data[layout->hour], data[layout->minute], data[layout->second]);
// Eliminate inter-dive events
size = cochran_commander_backparse(parser, samples, size);
}
// Cochran samples depth every second and varies between ascent rate
// and temp every other second.
// Prime values from the dive log section
if (parser->model == COCHRAN_MODEL_COMMANDER_AIR_NITROX) {
// Commander stores start depth in quarter-feet
start_depth = array_uint16_le (data + layout->start_depth) / 4.0;
} else {
// EMC stores start depth in 256ths of a foot.
start_depth = array_uint16_le (data + layout->start_depth) / 256.0;
}
last_sample_time = sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
sample.depth = start_depth * FEET;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
sample.temperature = (data[layout->start_temp] - 32.0) / 1.8;
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
while (offset < size) {
const unsigned char *s = samples + offset;
sample.time = time;
if (last_sample_time != sample.time) {
// We haven't issued this time yet.
last_sample_time = sample.time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
}
// If corrupt_dive end before offset
if (corrupt_dive) {
// When we aren't sure where the sample data ends we can
// look for events that shouldn't be in the sample data.
// 0xFF is unwritten memory
// 0xA8 indicates start of post-dive interval
// 0xE3 (switch to FO2 mode) and 0xF3 (switch to blend 1) occur
// at dive start so when we see them after the first second we
// found the beginning of the next dive.
if (s[0] == 0xFF || s[0] == 0xA8) {
DEBUG(abstract->context, "Used corrupt dive breakout 1 on event %02x", s[0]);
break;
}
if (time > 1 && (s[0] == 0xE3 || s[0] == 0xF3)) {
DEBUG(abstract->context, "Used corrupt dive breakout 2 on event %02x", s[0]);
break;
}
}
// Check for event
if (s[0] & 0x80) {
offset += cochran_commander_handle_event(parser, s[0], callback, userdata);
if (layout->format == SAMPLE_EMC) {
// EMC models have events indicating change in deco status
// Commander may have them but I don't have example data
switch (s[0]) {
case 0xC5: // Deco obligation begins
deco_obligation = 1;
break;
case 0xD8: // Deco obligation ends
deco_obligation = 0;
break;
case 0xAB: // Decrement ceiling (deeper)
deco_ceiling += 10; // feet
sample.deco.type = DC_DECO_DECOSTOP;
sample.deco.time = (array_uint16_le(s + layout->samplesize) + 1) * 60;
sample.deco.depth = deco_ceiling * FEET;
if (callback) callback(DC_SAMPLE_DECO, sample, userdata);
break;
case 0xAD: // Increment ceiling (shallower)
deco_ceiling -= 10; // feet
sample.deco.type = DC_DECO_DECOSTOP;
sample.deco.depth = deco_ceiling * FEET;
sample.deco.time = (array_uint16_le(s + layout->samplesize) + 1) * 60;
if (callback) callback(DC_SAMPLE_DECO, sample, userdata);
break;
case 0xC0: // Switched to FO2 21% mode (surface)
// Event seen upon surfacing
break;
case 0xCD: // Switched to deco blend
case 0xEF: // Switched to gas blend 2
sample.gasmix = 1;
if (callback) callback(DC_SAMPLE_GASMIX, sample, userdata);
break;
case 0xF3: // Switched to gas blend 1
sample.gasmix = 0;
if (callback) callback(DC_SAMPLE_GASMIX, sample, userdata);
break;
}
}
continue;
}
// Make sure we have a full sample
if (offset + layout->samplesize > size)
break;
// Depth is logged as change in feet, bit 0x40 means negative depth
if (s[0] & 0x40)
depth -= (s[0] & 0x3f);
else
depth += (s[0] & 0x3f);
sample.depth = (start_depth + depth / 4.0) * FEET;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Ascent rate is logged in the 0th sample, temp in the 1st, repeat.
if (time % 2 == 0) {
// Ascent rate
double ascent_rate = 0.0;
if (s[1] & 0x80)
ascent_rate = (s[1] & 0x7f);
else
ascent_rate = -(s[1] & 0x7f);
ascent_rate *= FEET / 4.0;
} else {
// Temperature logged in half degrees F above 20
double temperature = s[1] / 2.0 + 20.0;
sample.temperature = (temperature - 32.0) / 1.8;
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
}
// Cochran EMC models store NDL and deco stop time
// in the 20th to 23rd sample
if (layout->format == SAMPLE_EMC) {
// Tissue load is recorded across 20 samples, we ignore them
// NDL and deco stop time is recorded across the next 4 samples
// The first 2 are either NDL or stop time at deepest stop (if in deco)
// The next 2 are total deco stop time.
unsigned int deco_time = 0;
switch (time % 24) {
case 21:
deco_time = last_sample[2] + s[2] * 256 + 1;
if (deco_obligation) {
/* Deco time for deepest stop, unused */
} else {
/* Send deco NDL sample */
sample.deco.type = DC_DECO_NDL;
sample.deco.time = deco_time * 60;
sample.deco.depth = 0;
if (callback) callback (DC_SAMPLE_DECO, sample, userdata);
}
break;
case 23:
/* Deco time, total obligation */
deco_time = last_sample[2] + s[2] * 256 + 1;
if (deco_obligation) {
sample.deco.type = DC_DECO_DECOSTOP;
sample.deco.depth = deco_ceiling * FEET;
sample.deco.time = deco_time * 60;
if (callback) callback (DC_SAMPLE_DECO, sample, userdata);
}
break;
}
last_sample = s;
}
time++;
offset += layout->samplesize;
}
return DC_STATUS_SUCCESS;
}

View File

@ -263,6 +263,10 @@ static const dc_descriptor_t g_descriptors[] = {
{"DiveSystem", "iX3M Deep", DC_FAMILY_DIVESYSTEM_IDIVE, 0x23},
{"DiveSystem", "iX3M Tec", DC_FAMILY_DIVESYSTEM_IDIVE, 0x24},
{"DiveSystem", "iX3M Reb", DC_FAMILY_DIVESYSTEM_IDIVE, 0x25},
{"Cochran", "Commander", DC_FAMILY_COCHRAN_COMMANDER, 0},
{"Cochran", "EMC-14", DC_FAMILY_COCHRAN_COMMANDER, 1},
{"Cochran", "EMC-16", DC_FAMILY_COCHRAN_COMMANDER, 2},
{"Cochran", "EMC-20H", DC_FAMILY_COCHRAN_COMMANDER, 3},
};
typedef struct dc_descriptor_iterator_t {

View File

@ -36,6 +36,7 @@
#include <libdivecomputer/diverite.h>
#include <libdivecomputer/citizen.h>
#include <libdivecomputer/divesystem.h>
#include <libdivecomputer/cochran.h>
#include "device-private.h"
#include "context-private.h"
@ -184,6 +185,9 @@ dc_device_open (dc_device_t **out, dc_context_t *context, dc_descriptor_t *descr
case DC_FAMILY_DIVESYSTEM_IDIVE:
rc = divesystem_idive_device_open2 (&device, context, name, dc_descriptor_get_model (descriptor));
break;
case DC_FAMILY_COCHRAN_COMMANDER:
rc = cochran_commander_device_open (&device, context, name);
break;
default:
return DC_STATUS_INVALIDARGS;
}

View File

@ -71,6 +71,7 @@ diverite_nitekq_parser_create
citizen_aqualand_parser_create
divesystem_idive_parser_create
divesystem_idive_parser_create2
cochran_commander_parser_create
dc_device_open
dc_device_close
@ -177,3 +178,4 @@ diverite_nitekq_extract_dives
citizen_aqualand_device_open
divesystem_idive_device_open
divesystem_idive_device_open2
cochran_commander_device_open

View File

@ -35,6 +35,7 @@
#include <libdivecomputer/diverite.h>
#include <libdivecomputer/citizen.h>
#include <libdivecomputer/divesystem.h>
#include <libdivecomputer/cochran.h>
#include "context-private.h"
#include "parser-private.h"
@ -144,6 +145,9 @@ dc_parser_new (dc_parser_t **out, dc_device_t *device)
case DC_FAMILY_DIVESYSTEM_IDIVE:
rc = divesystem_idive_parser_create2 (&parser, context, device->devinfo.model);
break;
case DC_FAMILY_COCHRAN_COMMANDER:
rc = cochran_commander_parser_create (&parser, context, device->devinfo.model);
break;
default:
return DC_STATUS_INVALIDARGS;
}