libdc/src/hw_ostc.c
Jef Driesen 0ae9e355f8 Check for memory allocation errors
Appending data to the buffer may fail if a memory allocation is
necessary to enlarge the buffer. Hence the return value of the
dc_buffer_append() call should always be checked, unless the memory was
already pre-allocated or the check is deferred after the last operation.
2018-01-29 15:06:58 +01:00

981 lines
28 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2009 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include "hw_ostc.h"
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "array.h"
#include "ihex.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &hw_ostc_device_vtable)
#define C_ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
#define MAXRETRIES 9
#define FW_190 0x015A
#define SZ_MD2HASH 18
#define SZ_EEPROM 256
#define SZ_HEADER 266
#define SZ_FW_190 0x8000
#define SZ_FW_NEW 0x10000
#define SZ_FIRMWARE 0x17F40
#define SZ_BLOCK 0x40
#define ACK 0x4B /* "K" for ok */
#define NAK 0x4E /* "N" for not ok */
#define PICTYPE 0x57 /* PIC type (18F4685) */
#define WIDTH 320
#define HEIGHT 240
#define BLACK 0x00
#define WHITE 0xFF
typedef struct hw_ostc_device_t {
dc_device_t base;
dc_iostream_t *iostream;
unsigned char fingerprint[5];
} hw_ostc_device_t;
typedef struct hw_ostc_firmware_t {
unsigned char data[SZ_FIRMWARE];
unsigned char bitmap[SZ_FIRMWARE / SZ_BLOCK];
} hw_ostc_firmware_t;
static dc_status_t hw_ostc_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t hw_ostc_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t hw_ostc_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t hw_ostc_device_timesync (dc_device_t *abstract, const dc_datetime_t *datetime);
static dc_status_t hw_ostc_device_close (dc_device_t *abstract);
static const dc_device_vtable_t hw_ostc_device_vtable = {
sizeof(hw_ostc_device_t),
DC_FAMILY_HW_OSTC,
hw_ostc_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
hw_ostc_device_dump, /* dump */
hw_ostc_device_foreach, /* foreach */
hw_ostc_device_timesync, /* timesync */
hw_ostc_device_close /* close */
};
static dc_status_t
hw_ostc_extract_dives (dc_device_t *device, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata);
static dc_status_t
hw_ostc_send (hw_ostc_device_t *device, unsigned char cmd, unsigned int echo)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
// Send the command.
unsigned char command[1] = {cmd};
status = dc_iostream_write (device->iostream, command, sizeof (command), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
if (echo) {
// Read the echo.
unsigned char answer[1] = {0};
status = dc_iostream_read (device->iostream, answer, sizeof (answer), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the echo.");
return status;
}
// Verify the echo.
if (memcmp (answer, command, sizeof (command)) != 0) {
ERROR (abstract->context, "Unexpected echo.");
return DC_STATUS_PROTOCOL;
}
}
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_ostc_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (hw_ostc_device_t *) dc_device_allocate (context, &hw_ostc_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->iostream = NULL;
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
status = dc_serial_open (&device->iostream, context, name);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to open the serial port.");
goto error_free;
}
// Set the serial communication protocol (115200 8N1).
status = dc_iostream_configure (device->iostream, 115200, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_close;
}
// Set the timeout for receiving data.
status = dc_iostream_set_timeout (device->iostream, 4000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_close;
}
// Make sure everything is in a sane state.
dc_iostream_sleep (device->iostream, 100);
dc_iostream_purge (device->iostream, DC_DIRECTION_ALL);
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_close:
dc_iostream_close (device->iostream);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
hw_ostc_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Close the device.
rc = dc_iostream_close (device->iostream);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
static dc_status_t
hw_ostc_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t*) abstract;
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = SZ_HEADER + SZ_FW_NEW;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Send the command.
unsigned char command[1] = {'a'};
status = dc_iostream_write (device->iostream, command, sizeof (command), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
// Read the header.
unsigned char header[SZ_HEADER] = {0};
status = dc_iostream_read (device->iostream, header, sizeof (header), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the header.");
return status;
}
// Verify the header.
unsigned char preamble[] = {0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0x55};
if (memcmp (header, preamble, sizeof (preamble)) != 0) {
ERROR (abstract->context, "Unexpected answer header.");
return DC_STATUS_DATAFORMAT;
}
// Get the firmware version.
unsigned int firmware = array_uint16_be (header + 264);
// Get the amount of profile data.
unsigned int size = sizeof (header);
if (firmware > FW_190)
size += SZ_FW_NEW;
else
size += SZ_FW_190;
// Update and emit a progress event.
progress.current = sizeof (header);
progress.maximum = size;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Allocate the required amount of memory.
if (!dc_buffer_resize (buffer, size)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
unsigned char *data = dc_buffer_get_data (buffer);
// Copy the header to the output buffer.
memcpy (data, header, sizeof (header));
unsigned int nbytes = sizeof (header);
while (nbytes < size) {
// Set the minimum packet size.
unsigned int len = 1024;
// Increase the packet size if more data is immediately available.
size_t available = 0;
status = dc_iostream_get_available (device->iostream, &available);
if (status == DC_STATUS_SUCCESS && available > len)
len = available;
// Limit the packet size to the total size.
if (nbytes + len > size)
len = size - nbytes;
// Read the packet.
status = dc_iostream_read (device->iostream, data + nbytes, len, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
// Update and emit a progress event.
progress.current += len;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
nbytes += len;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (0);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = hw_ostc_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
// Emit a device info event.
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.firmware = array_uint16_be (data + 264);
devinfo.serial = array_uint16_le (data + 6);
if (devinfo.serial > 7000)
devinfo.model = 3; // OSTC 2C
else if (devinfo.serial > 2048)
devinfo.model = 2; // OSTC 2N
else if (devinfo.serial > 300)
devinfo.model = 1; // OSTC Mk2
else
devinfo.model = 0; // OSTC
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
rc = hw_ostc_extract_dives (abstract, dc_buffer_get_data (buffer),
dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
dc_status_t
hw_ostc_device_md2hash (dc_device_t *abstract, unsigned char data[], unsigned int size)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (size < SZ_MD2HASH) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
dc_status_t rc = hw_ostc_send (device, 'e', 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the answer.
status = dc_iostream_read (device->iostream, data, SZ_MD2HASH, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_device_timesync (dc_device_t *abstract, const dc_datetime_t *datetime)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (datetime == NULL) {
ERROR (abstract->context, "Invalid parameter specified.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
dc_status_t rc = hw_ostc_send (device, 'b', 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Send the data packet.
unsigned char packet[6] = {
datetime->hour, datetime->minute, datetime->second,
datetime->month, datetime->day, datetime->year - 2000};
status = dc_iostream_write (device->iostream, packet, sizeof (packet), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the data packet.");
return status;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_ostc_device_eeprom_read (dc_device_t *abstract, unsigned int bank, unsigned char data[], unsigned int size)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (bank > 2) {
ERROR (abstract->context, "Invalid eeprom bank specified.");
return DC_STATUS_INVALIDARGS;
}
if (size < SZ_EEPROM) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
const unsigned char command[] = {'g', 'j', 'm'};
dc_status_t rc = hw_ostc_send (device, command[bank], 0);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the answer.
status = dc_iostream_read (device->iostream, data, SZ_EEPROM, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_ostc_device_eeprom_write (dc_device_t *abstract, unsigned int bank, const unsigned char data[], unsigned int size)
{
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
if (bank > 2) {
ERROR (abstract->context, "Invalid eeprom bank specified.");
return DC_STATUS_INVALIDARGS;
}
if (size != SZ_EEPROM) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_INVALIDARGS;
}
// Send the command.
const unsigned char command[] = {'d', 'i', 'n'};
dc_status_t rc = hw_ostc_send (device, command[bank], 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
for (unsigned int i = 4; i < SZ_EEPROM; ++i) {
// Send the data byte.
rc = hw_ostc_send (device, data[i], 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_ostc_device_reset (dc_device_t *abstract)
{
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Send the command.
dc_status_t rc = hw_ostc_send (device, 'h', 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
return DC_STATUS_SUCCESS;
}
dc_status_t
hw_ostc_device_screenshot (dc_device_t *abstract, dc_buffer_t *buffer, hw_ostc_format_t format)
{
dc_status_t status = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Erase the current contents of the buffer.
if (!dc_buffer_clear (buffer)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Bytes per pixel (RGB formats only).
unsigned int bpp = 0;
if (format == HW_OSTC_FORMAT_RAW) {
// The RAW format has a variable size, depending on the actual image
// content. Usually the total size is around 4K, which is used as an
// initial guess and expanded when necessary.
if (!dc_buffer_reserve (buffer, 4096)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
} else {
// The RGB formats have a fixed size, depending only on the dimensions
// and the number of bytes per pixel. The required amount of memory is
// allocated immediately.
bpp = (format == HW_OSTC_FORMAT_RGB16) ? 2 : 3;
if (!dc_buffer_resize (buffer, WIDTH * HEIGHT * bpp)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = WIDTH * HEIGHT;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Send the command.
dc_status_t rc = hw_ostc_send (device, 'l', 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Cache the pointer to the image data (RGB formats only).
unsigned char *image = dc_buffer_get_data (buffer);
// The OSTC sends the image data in a column by column layout, which is
// converted on the fly to a more convenient row by row layout as used
// in the majority of image formats. This conversions requires knowledge
// of the pixel coordinates.
unsigned int x = 0, y = 0;
unsigned int npixels = 0;
while (npixels < WIDTH * HEIGHT) {
unsigned char raw[3] = {0};
status = dc_iostream_read (device->iostream, raw, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the packet.");
return status;
}
unsigned int nbytes = 1;
unsigned int count = raw[0];
if ((count & 0x80) == 0x00) {
// Black pixel.
raw[1] = raw[2] = BLACK;
count &= 0x7F;
} else if ((count & 0xC0) == 0xC0) {
// White pixel.
raw[1] = raw[2] = WHITE;
count &= 0x3F;
} else {
// Color pixel.
status = dc_iostream_read (device->iostream, raw + 1, 2, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the packet.");
return status;
}
nbytes += 2;
count &= 0x3F;
}
count++;
// Check for buffer overflows.
if (npixels + count > WIDTH * HEIGHT) {
ERROR (abstract->context, "Unexpected number of pixels received.");
return DC_STATUS_DATAFORMAT;
}
if (format == HW_OSTC_FORMAT_RAW) {
// Append the raw data to the output buffer.
if (!dc_buffer_append (buffer, raw, nbytes)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
} else {
// Store the decompressed data in the output buffer.
for (unsigned int i = 0; i < count; ++i) {
// Calculate the offset to the current pixel (row layout)
unsigned int offset = (y * WIDTH + x) * bpp;
if (format == HW_OSTC_FORMAT_RGB16) {
image[offset + 0] = raw[1];
image[offset + 1] = raw[2];
} else {
unsigned int value = (raw[1] << 8) + raw[2];
unsigned char r = (value & 0xF800) >> 11;
unsigned char g = (value & 0x07E0) >> 5;
unsigned char b = (value & 0x001F);
image[offset + 0] = 255 * r / 31;
image[offset + 1] = 255 * g / 63;
image[offset + 2] = 255 * b / 31;
}
// Move to the next pixel coordinate (column layout).
y++;
if (y == HEIGHT) {
y = 0;
x++;
}
}
}
// Update and emit a progress event.
progress.current += count;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
npixels += count;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
const unsigned char header[2] = {0xFA, 0xFA};
const unsigned char footer[2] = {0xFD, 0xFD};
// Initialize the data stream pointers.
const unsigned char *current = data + size;
const unsigned char *previous = data + size;
// Search the data stream for header markers.
while ((current = array_search_backward (data + 266, current - data - 266, header, sizeof (header))) != NULL) {
// Move the pointer to the begin of the header.
current -= sizeof (header);
// Once a header marker is found, start searching
// for the corresponding footer marker. The search is
// now limited to the start of the previous dive.
previous = array_search_forward (current, previous - current, footer, sizeof (footer));
if (previous) {
// Move the pointer to the end of the footer.
previous += sizeof (footer);
if (device && memcmp (current + 3, device->fingerprint, sizeof (device->fingerprint)) == 0)
return DC_STATUS_SUCCESS;
if (callback && !callback (current, previous - current, current + 3, 5, userdata))
return DC_STATUS_SUCCESS;
}
// Prepare for the next iteration.
previous = current;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_firmware_readfile (hw_ostc_firmware_t *firmware, dc_context_t *context, const char *filename)
{
dc_status_t rc = DC_STATUS_SUCCESS;
if (firmware == NULL) {
ERROR (context, "Invalid arguments.");
return DC_STATUS_INVALIDARGS;
}
// Initialize the buffers.
memset (firmware->data, 0xFF, sizeof (firmware->data));
memset (firmware->bitmap, 0x00, sizeof (firmware->bitmap));
// Open the hex file.
dc_ihex_file_t *file = NULL;
rc = dc_ihex_file_open (&file, context, filename);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to open the hex file.");
return rc;
}
// Read the hex file.
unsigned int lba = 0;
dc_ihex_entry_t entry;
while ((rc = dc_ihex_file_read (file, &entry)) == DC_STATUS_SUCCESS) {
if (entry.type == 0) {
// Data record.
unsigned int address = (lba << 16) + entry.address;
if (address + entry.length > SZ_FIRMWARE) {
WARNING (context, "Ignoring out of range record (0x%08x,%u).", address, entry.length);
continue;
}
// Copy the record to the buffer.
memcpy (firmware->data + address, entry.data, entry.length);
// Mark the corresponding blocks in the bitmap.
unsigned int begin = address / SZ_BLOCK;
unsigned int end = (address + entry.length + SZ_BLOCK - 1) / SZ_BLOCK;
for (unsigned int i = begin; i < end; ++i) {
firmware->bitmap[i] = 1;
}
} else if (entry.type == 1) {
// End of file record.
break;
} else if (entry.type == 4) {
// Extended linear address record.
lba = array_uint16_be (entry.data);
} else {
ERROR (context, "Unexpected record type.");
dc_ihex_file_close (file);
return DC_STATUS_DATAFORMAT;
}
}
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_DONE) {
ERROR (context, "Failed to read the record.");
dc_ihex_file_close (file);
return rc;
}
// Close the file.
dc_ihex_file_close (file);
// Verify the presence of the first block.
if (firmware->bitmap[0] == 0) {
ERROR (context, "No first data block.");
return DC_STATUS_DATAFORMAT;
}
// Setup the last block.
// Copy the "goto main" instruction, stored in the first 8 bytes of the hex
// file, to the end of the last block at address 0x17F38. This last block
// needs to be present, regardless of whether it's included in the hex file
// or not!
memset (firmware->data + SZ_FIRMWARE - SZ_BLOCK, 0xFF, SZ_BLOCK - 8);
memcpy (firmware->data + SZ_FIRMWARE - 8, firmware->data, 8);
firmware->bitmap[C_ARRAY_SIZE(firmware->bitmap) - 1] = 1;
// Setup the first block.
// Copy the hardcoded "goto 0x17F40" instruction to the start of the first
// block at address 0x00000.
const unsigned char header[] = {0xA0, 0xEF, 0xBF, 0xF0};
memcpy (firmware->data, header, sizeof (header));
return rc;
}
static dc_status_t
hw_ostc_firmware_setup_internal (hw_ostc_device_t *device)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
// Send the command.
unsigned char command[1] = {0xC1};
status = dc_iostream_write (device->iostream, command, sizeof (command), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
// Read the response.
unsigned char answer[2] = {0};
status = dc_iostream_read (device->iostream, answer, sizeof (answer), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the response.");
return status;
}
// Verify the response.
const unsigned char expected[2] = {PICTYPE, ACK};
if (memcmp (answer, expected, sizeof (expected)) != 0) {
ERROR (abstract->context, "Unexpected response.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_firmware_setup (hw_ostc_device_t *device, unsigned int maxretries)
{
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned int nretries = 0;
while ((rc = hw_ostc_firmware_setup_internal (device)) != DC_STATUS_SUCCESS) {
if (rc != DC_STATUS_TIMEOUT && rc != DC_STATUS_PROTOCOL)
break;
// Abort if the maximum number of retries is reached.
if (nretries++ >= maxretries)
break;
}
return rc;
}
static dc_status_t
hw_ostc_firmware_write_internal (hw_ostc_device_t *device, unsigned char *data, unsigned int size)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
// Send the packet.
status = dc_iostream_write (device->iostream, data, size, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the packet.");
return status;
}
// Read the response.
unsigned char answer[1] = {0};
status = dc_iostream_read (device->iostream, answer, sizeof (answer), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the response.");
return status;
}
// Verify the response.
const unsigned char expected[] = {ACK};
if (memcmp (answer, expected, sizeof (expected)) != 0) {
ERROR (abstract->context, "Unexpected response.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
hw_ostc_firmware_write (hw_ostc_device_t *device, unsigned char *data, unsigned int size)
{
dc_status_t rc = DC_STATUS_SUCCESS;
unsigned int nretries = 0;
while ((rc = hw_ostc_firmware_write_internal (device, data, size)) != DC_STATUS_SUCCESS) {
if (rc != DC_STATUS_TIMEOUT && rc != DC_STATUS_PROTOCOL)
break;
// Abort if the maximum number of retries is reached.
if (nretries++ >= MAXRETRIES)
break;
}
return rc;
}
/*
* Think twice before modifying the code for updating the ostc firmware!
* It has been carefully developed and tested with assistance from
* Heinrichs-Weikamp, using a special development unit. If you start
* experimenting with a normal unit and accidentally screw up, you might
* brick the device permanently and turn it into an expensive
* paperweight. You have been warned!
*/
dc_status_t
hw_ostc_device_fwupdate (dc_device_t *abstract, const char *filename)
{
dc_status_t rc = DC_STATUS_SUCCESS;
hw_ostc_device_t *device = (hw_ostc_device_t *) abstract;
dc_context_t *context = (abstract ? abstract->context : NULL);
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
// Allocate memory for the firmware data.
hw_ostc_firmware_t *firmware = (hw_ostc_firmware_t *) malloc (sizeof (hw_ostc_firmware_t));
if (firmware == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Read the hex file.
rc = hw_ostc_firmware_readfile (firmware, context, filename);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to read the firmware file.");
free (firmware);
return rc;
}
// Temporary set a relative short timeout. The command to setup the
// bootloader needs to be send repeatedly, until the response packet is
// received. Thus the time between each two attempts is directly controlled
// by the timeout value.
rc = dc_iostream_set_timeout (device->iostream, 300);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
free (firmware);
return rc;
}
// Setup the bootloader.
const unsigned int baudrates[] = {19200, 115200};
for (unsigned int i = 0; i < C_ARRAY_SIZE(baudrates); ++i) {
// Adjust the baudrate.
rc = dc_iostream_configure (device->iostream, baudrates[i], 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to set the terminal attributes.");
free (firmware);
return rc;
}
// Try to setup the bootloader.
unsigned int maxretries = (i == 0 ? 1 : MAXRETRIES);
rc = hw_ostc_firmware_setup (device, maxretries);
if (rc == DC_STATUS_SUCCESS)
break;
}
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to setup the bootloader.");
free (firmware);
return rc;
}
// Increase the timeout again.
rc = dc_iostream_set_timeout (device->iostream, 1000);
if (rc != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
free (firmware);
return rc;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = C_ARRAY_SIZE(firmware->bitmap);
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
for (unsigned int i = 0; i < C_ARRAY_SIZE(firmware->bitmap); ++i) {
// Skip empty blocks.
if (firmware->bitmap[i] == 0)
continue;
// Create the packet.
unsigned int address = i * SZ_BLOCK;
unsigned char packet[4 + SZ_BLOCK + 1] = {
(address >> 16) & 0xFF,
(address >> 8) & 0xFF,
(address ) & 0xFF,
SZ_BLOCK
};
memcpy (packet + 4, firmware->data + address, SZ_BLOCK);
packet[sizeof (packet) - 1] = ~checksum_add_uint8 (packet, 4 + SZ_BLOCK, 0x00) + 1;
// Send the packet.
rc = hw_ostc_firmware_write (device, packet, sizeof (packet));
if (rc != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the packet.");
free (firmware);
return rc;
}
// Update and emit a progress event.
progress.current = i + 1;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
}
free (firmware);
return DC_STATUS_SUCCESS;
}