libdc/src/atomics_cobalt_parser.c
Dirk Hohndel f902f5882c Add DC_FIELD_STRING support to Atomics Aquatics Cobalt parser
Just support a few of the most useful values. There are several more we
could and should add.

Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2015-08-26 10:14:09 -07:00

397 lines
11 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2011 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
#include <libdivecomputer/atomics_cobalt.h>
#include <libdivecomputer/units.h>
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) dc_parser_isinstance((parser), &atomics_cobalt_parser_vtable)
#define SZ_HEADER 228
#define SZ_GASMIX 18
#define SZ_GASSWITCH 6
#define SZ_SEGMENT 16
typedef struct atomics_cobalt_parser_t atomics_cobalt_parser_t;
struct atomics_cobalt_parser_t {
dc_parser_t base;
// Depth calibration.
double atmospheric;
double hydrostatic;
};
static dc_status_t atomics_cobalt_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t atomics_cobalt_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t atomics_cobalt_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t atomics_cobalt_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static dc_status_t atomics_cobalt_parser_destroy (dc_parser_t *abstract);
static const dc_parser_vtable_t atomics_cobalt_parser_vtable = {
DC_FAMILY_ATOMICS_COBALT,
atomics_cobalt_parser_set_data, /* set_data */
atomics_cobalt_parser_get_datetime, /* datetime */
atomics_cobalt_parser_get_field, /* fields */
atomics_cobalt_parser_samples_foreach, /* samples_foreach */
atomics_cobalt_parser_destroy /* destroy */
};
dc_status_t
atomics_cobalt_parser_create (dc_parser_t **out, dc_context_t *context)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) malloc (sizeof (atomics_cobalt_parser_t));
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
parser_init (&parser->base, context, &atomics_cobalt_parser_vtable);
// Set the default values.
parser->atmospheric = 0.0;
parser->hydrostatic = 1025.0 * GRAVITY;
*out = (dc_parser_t*) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_destroy (dc_parser_t *abstract)
{
// Free memory.
free (abstract);
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
return DC_STATUS_SUCCESS;
}
dc_status_t
atomics_cobalt_parser_set_calibration (dc_parser_t *abstract, double atmospheric, double hydrostatic)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t*) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
parser->atmospheric = atmospheric;
parser->hydrostatic = hydrostatic;
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
if (abstract->size < SZ_HEADER)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
if (datetime) {
datetime->year = array_uint16_le (p + 0x14);
datetime->month = p[0x16];
datetime->day = p[0x17];
datetime->hour = p[0x18];
datetime->minute = p[0x19];
datetime->second = 0;
}
return DC_STATUS_SUCCESS;
}
#define BUFLEN 16
static dc_status_t
atomics_cobalt_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract;
if (abstract->size < SZ_HEADER)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_tank_t *tank = (dc_tank_t *) value;
double atmospheric = 0.0;
char buf[BUFLEN];
dc_field_string_t *string = (dc_field_string_t *) value;
if (parser->atmospheric)
atmospheric = parser->atmospheric;
else
atmospheric = array_uint16_le (p + 0x26) * BAR / 1000.0;
unsigned int workpressure = 0;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
*((unsigned int *) value) = array_uint16_le (p + 0x58) * 60;
break;
case DC_FIELD_MAXDEPTH:
*((double *) value) = (array_uint16_le (p + 0x56) * BAR / 1000.0 - atmospheric) / parser->hydrostatic;
break;
case DC_FIELD_GASMIX_COUNT:
case DC_FIELD_TANK_COUNT:
*((unsigned int *) value) = p[0x2a];
break;
case DC_FIELD_GASMIX:
gasmix->helium = p[SZ_HEADER + SZ_GASMIX * flags + 5] / 100.0;
gasmix->oxygen = p[SZ_HEADER + SZ_GASMIX * flags + 4] / 100.0;
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_TEMPERATURE_SURFACE:
*((double *) value) = (p[0x1B] - 32.0) * (5.0 / 9.0);
break;
case DC_FIELD_TANK:
p += SZ_HEADER + SZ_GASMIX * flags;
switch (p[2]) {
case 1: // Cuft at psi
case 2: // Cuft at bar
workpressure = array_uint16_le(p + 10);
if (workpressure == 0)
return DC_STATUS_DATAFORMAT;
tank->type = DC_TANKVOLUME_IMPERIAL;
tank->volume = array_uint16_le(p + 8) * CUFT * 1000.0;
tank->volume /= workpressure * PSI / ATM;
tank->workpressure = workpressure * PSI / BAR;
break;
case 3: // Wet volume in 1/10 liter
tank->type = DC_TANKVOLUME_METRIC;
tank->volume = array_uint16_le(p + 8) / 10.0;
tank->workpressure = 0.0;
break;
default:
return DC_STATUS_DATAFORMAT;
}
tank->gasmix = flags;
tank->beginpressure = array_uint16_le(p + 6) * PSI / BAR;
tank->endpressure = array_uint16_le(p + 14) * PSI / BAR;
break;
case DC_FIELD_DIVEMODE:
switch(p[0x24]) {
case 0: // Open Circuit Trimix
case 2: // Open Circuit Nitrox
*((dc_divemode_t *) value) = DC_DIVEMODE_OC;
break;
case 1: // Closed Circuit
*((dc_divemode_t *) value) = DC_DIVEMODE_CC;
break;
default:
return DC_STATUS_DATAFORMAT;
}
break;
case DC_FIELD_STRING:
switch(flags) {
case 0: // Serialnr
string->desc = "Serial";
snprintf(buf, BUFLEN, "%c%c%c%c-%c%c%c%c", p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11]);
break;
case 1: // Program Version
string->desc = "Program Version";
snprintf(buf, BUFLEN, "%.2f", array_uint16_le(p + 30) / 100.0);
break;
case 2: // Boot Version
string->desc = "Boot Version";
snprintf(buf, BUFLEN, "%.2f", array_uint16_le(p + 32) / 100.0);
break;
case 3: // Nofly
string->desc = "NoFly Time";
snprintf(buf, BUFLEN, "%0u:%02u", p[0x52], p[0x53]);
break;
default:
return DC_STATUS_UNSUPPORTED;
}
string->value = strdup(buf);
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
if (size < SZ_HEADER)
return DC_STATUS_DATAFORMAT;
unsigned int interval = data[0x1a];
unsigned int ngasmixes = data[0x2a];
unsigned int nswitches = data[0x2b];
unsigned int nsegments = array_uint16_le (data + 0x50);
unsigned int header = SZ_HEADER + SZ_GASMIX * ngasmixes +
SZ_GASSWITCH * nswitches;
if (size < header + SZ_SEGMENT * nsegments)
return DC_STATUS_DATAFORMAT;
double atmospheric = 0.0;
if (parser->atmospheric)
atmospheric = parser->atmospheric;
else
atmospheric = array_uint16_le (data + 0x26) * BAR / 1000.0;
// Previous gas mix - initialize with impossible value
unsigned int gasmix_previous = 0xFFFFFFFF;
// Get the primary tank.
unsigned int tank = 0;
while (tank < ngasmixes) {
unsigned int sensor = array_uint16_le(data + SZ_HEADER + SZ_GASMIX * tank + 12);
if (sensor == 1)
break;
tank++;
}
if (tank >= ngasmixes) {
ERROR (abstract->context, "Invalid primary tank index.");
return DC_STATUS_DATAFORMAT;
}
unsigned int time = 0;
unsigned int in_deco = 0;
unsigned int offset = header;
while (offset + SZ_SEGMENT <= size) {
dc_sample_value_t sample = {0};
// Time (seconds).
time += interval;
sample.time = time;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Depth (1/1000 bar).
unsigned int depth = array_uint16_le (data + offset + 0);
sample.depth = (depth * BAR / 1000.0 - atmospheric) / parser->hydrostatic;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Pressure (1 psi).
unsigned int pressure = array_uint16_le (data + offset + 2);
sample.pressure.tank = tank;
sample.pressure.value = pressure * PSI / BAR;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
// Current gas mix
unsigned int gasmix = data[offset + 4];
if (gasmix != gasmix_previous) {
unsigned int idx = 0;
while (idx < ngasmixes) {
if (data[SZ_HEADER + SZ_GASMIX * idx + 0] == gasmix)
break;
idx++;
}
if (idx >= ngasmixes) {
ERROR (abstract->context, "Invalid gas mix index.");
return DC_STATUS_DATAFORMAT;
}
unsigned int o2 = data[SZ_HEADER + SZ_GASMIX * idx + 4];
unsigned int he = data[SZ_HEADER + SZ_GASMIX * idx + 5];
sample.event.type = SAMPLE_EVENT_GASCHANGE2;
sample.event.time = 0;
sample.event.flags = 0;
sample.event.value = o2 | (he << 16);
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
gasmix_previous = gasmix;
}
// Temperature (1 °F).
unsigned int temperature = data[offset + 8];
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
// violation status
sample.event.type = 0;
sample.event.time = 0;
sample.event.value = 0;
sample.event.flags = 0;
unsigned int violation = data[offset + 11];
if (violation & 0x01) {
sample.event.type = SAMPLE_EVENT_ASCENT;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
if (violation & 0x04) {
sample.event.type = SAMPLE_EVENT_CEILING;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
if (violation & 0x08) {
sample.event.type = SAMPLE_EVENT_PO2;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
// NDL & deco
unsigned int ndl = data[offset + 5] * 60;
if (ndl > 0)
in_deco = 0;
else if (ndl == 0 && (violation & 0x02))
in_deco = 1;
if (in_deco)
sample.deco.type = DC_DECO_DECOSTOP;
else
sample.deco.type = DC_DECO_NDL;
sample.deco.time = ndl;
sample.deco.depth = 0.0;
if (callback) callback (DC_SAMPLE_DECO, sample, userdata);
offset += SZ_SEGMENT;
}
return DC_STATUS_SUCCESS;
}