libdc/src/suunto_d9.c
Jef Driesen 84563c6303 Refactor the internal serial and IrDA api.
The low level serial and IrDA functions are modified to:

 - Use the libdivecomputer namespace prefix.

 - Return a more detailed status code instead of the zero on success and
   negative on error return value. This will allow to return more
   fine-grained error codes.

 - The read and write functions have an additional output parameter to
   return the actual number of bytes transferred. Since these functions
   are not atomic, some data might still be transferred successfully if
   an error occurs.

The dive computer backends are updated to use the new api.
2016-05-10 11:34:57 +02:00

322 lines
9.1 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcmp, memcpy
#include <stdlib.h> // malloc, free
#include <assert.h> // assert
#include <libdivecomputer/suunto_d9.h>
#include "context-private.h"
#include "suunto_common2.h"
#include "serial.h"
#include "checksum.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), (const dc_device_vtable_t *) &suunto_d9_device_vtable)
#define C_ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))
#define D4i 0x19
#define D6i 0x1A
#define D9tx 0x1B
#define DX 0x1C
#define VYPERNOVO 0x1D
#define ZOOPNOVO 0x1E
typedef struct suunto_d9_device_t {
suunto_common2_device_t base;
dc_serial_t *port;
} suunto_d9_device_t;
static dc_status_t suunto_d9_device_packet (dc_device_t *abstract, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize, unsigned int size);
static dc_status_t suunto_d9_device_close (dc_device_t *abstract);
static const suunto_common2_device_vtable_t suunto_d9_device_vtable = {
{
sizeof(suunto_d9_device_t),
DC_FAMILY_SUUNTO_D9,
suunto_common2_device_set_fingerprint, /* set_fingerprint */
suunto_common2_device_read, /* read */
suunto_common2_device_write, /* write */
suunto_common2_device_dump, /* dump */
suunto_common2_device_foreach, /* foreach */
suunto_d9_device_close /* close */
},
suunto_d9_device_packet
};
static const suunto_common2_layout_t suunto_d9_layout = {
0x8000, /* memsize */
0x0011, /* fingerprint */
0x0023, /* serial */
0x019A, /* rb_profile_begin */
0x7FFE /* rb_profile_end */
};
static const suunto_common2_layout_t suunto_d9tx_layout = {
0x10000, /* memsize */
0x0013, /* fingerprint */
0x0024, /* serial */
0x019A, /* rb_profile_begin */
0xEBF0 /* rb_profile_end */
};
static const suunto_common2_layout_t suunto_dx_layout = {
0x10000, /* memsize */
0x0017, /* fingerprint */
0x0024, /* serial */
0x019A, /* rb_profile_begin */
0xEBF0 /* rb_profile_end */
};
static dc_status_t
suunto_d9_device_autodetect (suunto_d9_device_t *device, unsigned int model)
{
dc_status_t status = DC_STATUS_SUCCESS;
dc_device_t *abstract = (dc_device_t *) device;
// The list with possible baudrates.
const int baudrates[] = {9600, 115200};
// Use the model number as a hint to speedup the detection.
unsigned int hint = 0;
if (model == D4i || model == D6i || model == D9tx ||
model == DX || model == VYPERNOVO || model == ZOOPNOVO)
hint = 1;
for (unsigned int i = 0; i < C_ARRAY_SIZE(baudrates); ++i) {
// Use the baudrate array as circular array, starting from the hint.
unsigned int idx = (hint + i) % C_ARRAY_SIZE(baudrates);
// Adjust the baudrate.
status = dc_serial_configure (device->port, baudrates[idx], 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to set the terminal attributes.");
return status;
}
// Try reading the version info.
status = suunto_common2_device_version ((dc_device_t *) device, device->base.version, sizeof (device->base.version));
if (status == DC_STATUS_SUCCESS)
break;
}
return status;
}
dc_status_t
suunto_d9_device_open (dc_device_t **out, dc_context_t *context, const char *name, unsigned int model)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_d9_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (suunto_d9_device_t *) dc_device_allocate (context, &suunto_d9_device_vtable.base);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
suunto_common2_device_init (&device->base);
// Set the default values.
device->port = NULL;
// Open the device.
status = dc_serial_open (&device->port, context, name);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to open the serial port.");
goto error_free;
}
// Set the serial communication protocol (9600 8N1).
status = dc_serial_configure (device->port, 9600, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_close;
}
// Set the timeout for receiving data (3000 ms).
status = dc_serial_set_timeout (device->port, 3000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_close;
}
// Set the DTR line (power supply for the interface).
status = dc_serial_set_dtr (device->port, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the DTR line.");
goto error_close;
}
// Give the interface 100 ms to settle and draw power up.
dc_serial_sleep (device->port, 100);
// Make sure everything is in a sane state.
dc_serial_purge (device->port, DC_DIRECTION_ALL);
// Try to autodetect the protocol variant.
status = suunto_d9_device_autodetect (device, model);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to identify the protocol variant.");
goto error_close;
}
// Override the base class values.
model = device->base.version[0];
if (model == D4i || model == D6i || model == D9tx ||
model == VYPERNOVO || model == ZOOPNOVO)
device->base.layout = &suunto_d9tx_layout;
else if (model == DX)
device->base.layout = &suunto_dx_layout;
else
device->base.layout = &suunto_d9_layout;
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_close:
dc_serial_close (device->port);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
suunto_d9_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_d9_device_t *device = (suunto_d9_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Close the device.
rc = dc_serial_close (device->port);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
static dc_status_t
suunto_d9_device_packet (dc_device_t *abstract, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize, unsigned int size)
{
dc_status_t status = DC_STATUS_SUCCESS;
suunto_d9_device_t *device = (suunto_d9_device_t *) abstract;
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
// Clear RTS to send the command.
dc_serial_set_rts (device->port, 0);
// Send the command to the dive computer.
status = dc_serial_write (device->port, command, csize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to send the command.");
return status;
}
// Receive the echo.
unsigned char echo[128] = {0};
assert (sizeof (echo) >= csize);
status = dc_serial_read (device->port, echo, csize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the echo.");
return status;
}
// Verify the echo.
if (memcmp (command, echo, csize) != 0) {
ERROR (abstract->context, "Unexpected echo.");
return DC_STATUS_PROTOCOL;
}
// Set RTS to receive the reply.
dc_serial_set_rts (device->port, 1);
// Receive the answer of the dive computer.
status = dc_serial_read (device->port, answer, asize, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
// Verify the header of the package.
if (answer[0] != command[0]) {
ERROR (abstract->context, "Unexpected answer header.");
return DC_STATUS_PROTOCOL;
}
// Verify the size of the package.
if (array_uint16_be (answer + 1) + 4 != asize) {
ERROR (abstract->context, "Unexpected answer size.");
return DC_STATUS_PROTOCOL;
}
// Verify the parameters of the package.
if (memcmp (command + 3, answer + 3, asize - size - 4) != 0) {
ERROR (abstract->context, "Unexpected answer parameters.");
return DC_STATUS_PROTOCOL;
}
// Verify the checksum of the package.
unsigned char crc = answer[asize - 1];
unsigned char ccrc = checksum_xor_uint8 (answer, asize - 1, 0x00);
if (crc != ccrc) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
suunto_d9_device_version (dc_device_t *abstract, unsigned char data[], unsigned int size)
{
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
return suunto_common2_device_version (abstract, data, size);
}
dc_status_t
suunto_d9_device_reset_maxdepth (dc_device_t *abstract)
{
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
return suunto_common2_device_reset_maxdepth (abstract);
}