libdc/examples/output_xml.c
Jef Driesen becb8bd36e Add a usage field to the tank and gas mix
For gas consumption calculations it's very convenient to know whether a
tank is used for example in a sidemount configuration, or as
oxygen/diluent tank on a rebreather.

For rebreather dives, it's convenient to know whether a gas mix is used
as a closed-circuit mix (oxygen/diluent) or as an open circuit mix
(bailout).
2023-05-15 22:19:36 +02:00

499 lines
15 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2016 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <libdivecomputer/units.h>
#include "output-private.h"
#include "utils.h"
static dc_status_t dctool_xml_output_write (dctool_output_t *output, dc_parser_t *parser, const unsigned char data[], unsigned int size, const unsigned char fingerprint[], unsigned int fsize);
static dc_status_t dctool_xml_output_free (dctool_output_t *output);
typedef struct dctool_xml_output_t {
dctool_output_t base;
FILE *ostream;
dctool_units_t units;
} dctool_xml_output_t;
static const dctool_output_vtable_t xml_vtable = {
sizeof(dctool_xml_output_t), /* size */
dctool_xml_output_write, /* write */
dctool_xml_output_free, /* free */
};
typedef struct sample_data_t {
FILE *ostream;
dctool_units_t units;
unsigned int nsamples;
} sample_data_t;
static double
convert_depth (double value, dctool_units_t units)
{
if (units == DCTOOL_UNITS_IMPERIAL) {
return value / FEET;
} else {
return value;
}
}
static double
convert_temperature (double value, dctool_units_t units)
{
if (units == DCTOOL_UNITS_IMPERIAL) {
return value * (9.0 / 5.0) + 32.0;
} else {
return value;
}
}
static double
convert_pressure (double value, dctool_units_t units)
{
if (units == DCTOOL_UNITS_IMPERIAL) {
return value * BAR / PSI;
} else {
return value;
}
}
static double
convert_volume (double value, dctool_units_t units)
{
if (units == DCTOOL_UNITS_IMPERIAL) {
return value / 1000.0 / CUFT;
} else {
return value;
}
}
static void
sample_cb (dc_sample_type_t type, dc_sample_value_t value, void *userdata)
{
static const char *events[] = {
"none", "deco", "rbt", "ascent", "ceiling", "workload", "transmitter",
"violation", "bookmark", "surface", "safety stop", "gaschange",
"safety stop (voluntary)", "safety stop (mandatory)", "deepstop",
"ceiling (safety stop)", "floor", "divetime", "maxdepth",
"OLF", "PO2", "airtime", "rgbm", "heading", "tissue level warning",
"gaschange2"};
static const char *decostop[] = {
"ndl", "safety", "deco", "deep"};
sample_data_t *sampledata = (sample_data_t *) userdata;
unsigned int seconds = 0, milliseconds = 0;
switch (type) {
case DC_SAMPLE_TIME:
seconds = value.time / 1000;
milliseconds = value.time % 1000;
if (sampledata->nsamples++)
fprintf (sampledata->ostream, "</sample>\n");
fprintf (sampledata->ostream, "<sample>\n");
if (milliseconds) {
fprintf (sampledata->ostream, " <time>%02u:%02u.%03u</time>\n", seconds / 60, seconds % 60, milliseconds);
} else {
fprintf (sampledata->ostream, " <time>%02u:%02u</time>\n", seconds / 60, seconds % 60);
}
break;
case DC_SAMPLE_DEPTH:
fprintf (sampledata->ostream, " <depth>%.2f</depth>\n",
convert_depth(value.depth, sampledata->units));
break;
case DC_SAMPLE_PRESSURE:
fprintf (sampledata->ostream, " <pressure tank=\"%u\">%.2f</pressure>\n",
value.pressure.tank,
convert_pressure(value.pressure.value, sampledata->units));
break;
case DC_SAMPLE_TEMPERATURE:
fprintf (sampledata->ostream, " <temperature>%.2f</temperature>\n",
convert_temperature(value.temperature, sampledata->units));
break;
case DC_SAMPLE_EVENT:
if (value.event.type != SAMPLE_EVENT_GASCHANGE && value.event.type != SAMPLE_EVENT_GASCHANGE2) {
fprintf (sampledata->ostream, " <event type=\"%u\" time=\"%u\" flags=\"%u\" value=\"%u\">%s</event>\n",
value.event.type, value.event.time, value.event.flags, value.event.value, events[value.event.type]);
}
break;
case DC_SAMPLE_RBT:
fprintf (sampledata->ostream, " <rbt>%u</rbt>\n", value.rbt);
break;
case DC_SAMPLE_HEARTBEAT:
fprintf (sampledata->ostream, " <heartbeat>%u</heartbeat>\n", value.heartbeat);
break;
case DC_SAMPLE_BEARING:
fprintf (sampledata->ostream, " <bearing>%u</bearing>\n", value.bearing);
break;
case DC_SAMPLE_VENDOR:
fprintf (sampledata->ostream, " <vendor type=\"%u\" size=\"%u\">", value.vendor.type, value.vendor.size);
for (unsigned int i = 0; i < value.vendor.size; ++i)
fprintf (sampledata->ostream, "%02X", ((const unsigned char *) value.vendor.data)[i]);
fprintf (sampledata->ostream, "</vendor>\n");
break;
case DC_SAMPLE_SETPOINT:
fprintf (sampledata->ostream, " <setpoint>%.2f</setpoint>\n", value.setpoint);
break;
case DC_SAMPLE_PPO2:
if (value.ppo2.sensor != DC_SENSOR_NONE) {
fprintf (sampledata->ostream, " <ppo2 sensor=\"%u\">%.2f</ppo2>\n", value.ppo2.sensor, value.ppo2.value);
} else {
fprintf (sampledata->ostream, " <ppo2>%.2f</ppo2>\n", value.ppo2.value);
}
break;
case DC_SAMPLE_CNS:
fprintf (sampledata->ostream, " <cns>%.1f</cns>\n", value.cns * 100.0);
break;
case DC_SAMPLE_DECO:
fprintf (sampledata->ostream, " <deco time=\"%u\" depth=\"%.2f\">%s</deco>\n",
value.deco.time,
convert_depth(value.deco.depth, sampledata->units),
decostop[value.deco.type]);
if (value.deco.tts) {
fprintf (sampledata->ostream, " <tts>%u</tts>\n",
value.deco.tts);
}
break;
case DC_SAMPLE_GASMIX:
fprintf (sampledata->ostream, " <gasmix>%u</gasmix>\n", value.gasmix);
break;
default:
break;
}
}
dctool_output_t *
dctool_xml_output_new (const char *filename, dctool_units_t units)
{
dctool_xml_output_t *output = NULL;
if (filename == NULL)
goto error_exit;
// Allocate memory.
output = (dctool_xml_output_t *) dctool_output_allocate (&xml_vtable);
if (output == NULL) {
goto error_exit;
}
// Open the output file.
output->ostream = fopen (filename, "w");
if (output->ostream == NULL) {
goto error_free;
}
output->units = units;
fprintf (output->ostream, "<device>\n");
return (dctool_output_t *) output;
error_free:
dctool_output_deallocate ((dctool_output_t *) output);
error_exit:
return NULL;
}
static dc_status_t
dctool_xml_output_write (dctool_output_t *abstract, dc_parser_t *parser, const unsigned char data[], unsigned int size, const unsigned char fingerprint[], unsigned int fsize)
{
dctool_xml_output_t *output = (dctool_xml_output_t *) abstract;
dc_status_t status = DC_STATUS_SUCCESS;
// Initialize the sample data.
sample_data_t sampledata = {0};
sampledata.nsamples = 0;
sampledata.ostream = output->ostream;
sampledata.units = output->units;
fprintf (output->ostream, "<dive>\n<number>%u</number>\n<size>%u</size>\n", abstract->number, size);
if (fingerprint) {
fprintf (output->ostream, "<fingerprint>");
for (unsigned int i = 0; i < fsize; ++i)
fprintf (output->ostream, "%02X", fingerprint[i]);
fprintf (output->ostream, "</fingerprint>\n");
}
// Parse the datetime.
message ("Parsing the datetime.\n");
dc_datetime_t dt = {0};
status = dc_parser_get_datetime (parser, &dt);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the datetime.");
goto cleanup;
}
if (dt.timezone == DC_TIMEZONE_NONE) {
fprintf (output->ostream, "<datetime>%04i-%02i-%02i %02i:%02i:%02i</datetime>\n",
dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second);
} else {
fprintf (output->ostream, "<datetime>%04i-%02i-%02i %02i:%02i:%02i %+03i:%02i</datetime>\n",
dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt.timezone / 3600, (abs(dt.timezone) % 3600) / 60);
}
// Parse the divetime.
message ("Parsing the divetime.\n");
unsigned int divetime = 0;
status = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the divetime.");
goto cleanup;
}
fprintf (output->ostream, "<divetime>%02u:%02u</divetime>\n",
divetime / 60, divetime % 60);
// Parse the maxdepth.
message ("Parsing the maxdepth.\n");
double maxdepth = 0.0;
status = dc_parser_get_field (parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the maxdepth.");
goto cleanup;
}
fprintf (output->ostream, "<maxdepth>%.2f</maxdepth>\n",
convert_depth(maxdepth, output->units));
// Parse the avgdepth.
message ("Parsing the avgdepth.\n");
double avgdepth = 0.0;
status = dc_parser_get_field (parser, DC_FIELD_AVGDEPTH, 0, &avgdepth);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the avgdepth.");
goto cleanup;
}
if (status != DC_STATUS_UNSUPPORTED) {
fprintf (output->ostream, "<avgdepth>%.2f</avgdepth>\n",
convert_depth(avgdepth, output->units));
}
// Parse the temperature.
message ("Parsing the temperature.\n");
for (unsigned int i = 0; i < 3; ++i) {
dc_field_type_t fields[] = {DC_FIELD_TEMPERATURE_SURFACE,
DC_FIELD_TEMPERATURE_MINIMUM,
DC_FIELD_TEMPERATURE_MAXIMUM};
const char *names[] = {"surface", "minimum", "maximum"};
double temperature = 0.0;
status = dc_parser_get_field (parser, fields[i], 0, &temperature);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the temperature.");
goto cleanup;
}
if (status != DC_STATUS_UNSUPPORTED) {
fprintf (output->ostream, "<temperature type=\"%s\">%.1f</temperature>\n",
names[i],
convert_temperature(temperature, output->units));
}
}
// Parse the gas mixes.
message ("Parsing the gas mixes.\n");
unsigned int ngases = 0;
status = dc_parser_get_field (parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the gas mix count.");
goto cleanup;
}
for (unsigned int i = 0; i < ngases; ++i) {
dc_gasmix_t gasmix = {0};
status = dc_parser_get_field (parser, DC_FIELD_GASMIX, i, &gasmix);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the gas mix.");
goto cleanup;
}
fprintf (output->ostream,
"<gasmix>\n"
" <he>%.1f</he>\n"
" <o2>%.1f</o2>\n"
" <n2>%.1f</n2>\n",
gasmix.helium * 100.0,
gasmix.oxygen * 100.0,
gasmix.nitrogen * 100.0);
if (gasmix.usage) {
const char *usage[] = {"none", "oxygen", "diluent", "sidemount"};
fprintf (output->ostream,
" <usage>%s</usage>\n",
usage[gasmix.usage]);
}
fprintf (output->ostream,
"</gasmix>\n");
}
// Parse the tanks.
message ("Parsing the tanks.\n");
unsigned int ntanks = 0;
status = dc_parser_get_field (parser, DC_FIELD_TANK_COUNT, 0, &ntanks);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the tank count.");
goto cleanup;
}
for (unsigned int i = 0; i < ntanks; ++i) {
const char *names[] = {"none", "metric", "imperial"};
dc_tank_t tank = {0};
status = dc_parser_get_field (parser, DC_FIELD_TANK, i, &tank);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the tank.");
goto cleanup;
}
fprintf (output->ostream, "<tank>\n");
if (tank.gasmix != DC_GASMIX_UNKNOWN) {
fprintf (output->ostream,
" <gasmix>%u</gasmix>\n",
tank.gasmix);
}
if (tank.usage) {
const char *usage[] = {"none", "oxygen", "diluent", "sidemount"};
fprintf (output->ostream,
" <usage>%s</usage>\n",
usage[tank.usage]);
}
if (tank.type != DC_TANKVOLUME_NONE) {
fprintf (output->ostream,
" <type>%s</type>\n"
" <volume>%.1f</volume>\n"
" <workpressure>%.2f</workpressure>\n",
names[tank.type],
convert_volume(tank.volume, output->units),
convert_pressure(tank.workpressure, output->units));
}
fprintf (output->ostream,
" <beginpressure>%.2f</beginpressure>\n"
" <endpressure>%.2f</endpressure>\n"
"</tank>\n",
convert_pressure(tank.beginpressure, output->units),
convert_pressure(tank.endpressure, output->units));
}
// Parse the dive mode.
message ("Parsing the dive mode.\n");
dc_divemode_t divemode = DC_DIVEMODE_OC;
status = dc_parser_get_field (parser, DC_FIELD_DIVEMODE, 0, &divemode);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the dive mode.");
goto cleanup;
}
if (status != DC_STATUS_UNSUPPORTED) {
const char *names[] = {"freedive", "gauge", "oc", "ccr", "scr"};
fprintf (output->ostream, "<divemode>%s</divemode>\n",
names[divemode]);
}
// Parse the deco model.
message ("Parsing the deco model.\n");
dc_decomodel_t decomodel = {DC_DECOMODEL_NONE};
status = dc_parser_get_field (parser, DC_FIELD_DECOMODEL, 0, &decomodel);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the deco model.");
goto cleanup;
}
if (status != DC_STATUS_UNSUPPORTED) {
const char *names[] = {"none", "buhlmann", "vpm", "rgbm", "dciem"};
fprintf (output->ostream, "<decomodel>%s</decomodel>\n",
names[decomodel.type]);
if (decomodel.type == DC_DECOMODEL_BUHLMANN &&
(decomodel.params.gf.low != 0 || decomodel.params.gf.high != 0)) {
fprintf (output->ostream, "<gf>%u/%u</gf>\n",
decomodel.params.gf.low, decomodel.params.gf.high);
}
if (decomodel.conservatism) {
fprintf (output->ostream, "<conservatism>%d</conservatism>\n",
decomodel.conservatism);
}
}
// Parse the salinity.
message ("Parsing the salinity.\n");
dc_salinity_t salinity = {DC_WATER_FRESH, 0.0};
status = dc_parser_get_field (parser, DC_FIELD_SALINITY, 0, &salinity);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the salinity.");
goto cleanup;
}
if (status != DC_STATUS_UNSUPPORTED) {
fprintf (output->ostream, "<salinity type=\"%u\">%.1f</salinity>\n",
salinity.type, salinity.density);
}
// Parse the atmospheric pressure.
message ("Parsing the atmospheric pressure.\n");
double atmospheric = 0.0;
status = dc_parser_get_field (parser, DC_FIELD_ATMOSPHERIC, 0, &atmospheric);
if (status != DC_STATUS_SUCCESS && status != DC_STATUS_UNSUPPORTED) {
ERROR ("Error parsing the atmospheric pressure.");
goto cleanup;
}
if (status != DC_STATUS_UNSUPPORTED) {
fprintf (output->ostream, "<atmospheric>%.5f</atmospheric>\n",
convert_pressure(atmospheric, output->units));
}
// Parse the sample data.
message ("Parsing the sample data.\n");
status = dc_parser_samples_foreach (parser, sample_cb, &sampledata);
if (status != DC_STATUS_SUCCESS) {
ERROR ("Error parsing the sample data.");
goto cleanup;
}
cleanup:
if (sampledata.nsamples)
fprintf (output->ostream, "</sample>\n");
fprintf (output->ostream, "</dive>\n");
return status;
}
static dc_status_t
dctool_xml_output_free (dctool_output_t *abstract)
{
dctool_xml_output_t *output = (dctool_xml_output_t *) abstract;
fprintf (output->ostream, "</device>\n");
fclose (output->ostream);
return DC_STATUS_SUCCESS;
}