libdc/src/mares_nemo.c
Jef Driesen acb4a187fb Add support for synchronizing the device clock
Being able to synchronize the dive computer clock with the host system
is a very useful feature. Add the infrastructure to support this feature
through the public api.
2017-08-18 23:17:33 +02:00

327 lines
9.5 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2008 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <string.h> // memcpy, memcmp
#include <stdlib.h> // malloc, free
#include "mares_nemo.h"
#include "mares_common.h"
#include "context-private.h"
#include "device-private.h"
#include "serial.h"
#include "checksum.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &mares_nemo_device_vtable)
#ifdef PACKETSIZE
#undef PACKETSIZE /* Override the common value. */
#endif
#define MEMORYSIZE 0x4000
#define PACKETSIZE 0x20
#define NEMO 0
#define NEMOEXCEL 17
#define NEMOAPNEIST 18
typedef struct mares_nemo_device_t {
dc_device_t base;
dc_serial_t *port;
unsigned char fingerprint[5];
} mares_nemo_device_t;
static dc_status_t mares_nemo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size);
static dc_status_t mares_nemo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t mares_nemo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t mares_nemo_device_close (dc_device_t *abstract);
static const dc_device_vtable_t mares_nemo_device_vtable = {
sizeof(mares_nemo_device_t),
DC_FAMILY_MARES_NEMO,
mares_nemo_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
mares_nemo_device_dump, /* dump */
mares_nemo_device_foreach, /* foreach */
NULL, /* timesync */
mares_nemo_device_close /* close */
};
static const mares_common_layout_t mares_nemo_layout = {
MEMORYSIZE, /* memsize */
0x0070, /* rb_profile_begin */
0x3400, /* rb_profile_end */
0x3400, /* rb_freedives_begin */
0x4000 /* rb_freedives_end */
};
static const mares_common_layout_t mares_nemo_apneist_layout = {
MEMORYSIZE, /* memsize */
0x0070, /* rb_profile_begin */
0x0800, /* rb_profile_end */
0x0800, /* rb_freedives_begin */
0x4000 /* rb_freedives_end */
};
dc_status_t
mares_nemo_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
dc_status_t status = DC_STATUS_SUCCESS;
mares_nemo_device_t *device = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
device = (mares_nemo_device_t *) dc_device_allocate (context, &mares_nemo_device_vtable);
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
device->port = NULL;
memset (device->fingerprint, 0, sizeof (device->fingerprint));
// Open the device.
status = dc_serial_open (&device->port, context, name);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to open the serial port.");
goto error_free;
}
// Set the serial communication protocol (9600 8N1).
status = dc_serial_configure (device->port, 9600, 8, DC_PARITY_NONE, DC_STOPBITS_ONE, DC_FLOWCONTROL_NONE);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the terminal attributes.");
goto error_close;
}
// Set the timeout for receiving data (1000 ms).
status = dc_serial_set_timeout (device->port, 1000);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the timeout.");
goto error_close;
}
// Set the DTR line.
status = dc_serial_set_dtr (device->port, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the DTR line.");
goto error_close;
}
// Set the RTS line.
status = dc_serial_set_rts (device->port, 1);
if (status != DC_STATUS_SUCCESS) {
ERROR (context, "Failed to set the RTS line.");
goto error_close;
}
// Make sure everything is in a sane state.
dc_serial_purge (device->port, DC_DIRECTION_ALL);
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
error_close:
dc_serial_close (device->port);
error_free:
dc_device_deallocate ((dc_device_t *) device);
return status;
}
static dc_status_t
mares_nemo_device_close (dc_device_t *abstract)
{
dc_status_t status = DC_STATUS_SUCCESS;
mares_nemo_device_t *device = (mares_nemo_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Close the device.
rc = dc_serial_close (device->port);
if (rc != DC_STATUS_SUCCESS) {
dc_status_set_error(&status, rc);
}
return status;
}
static dc_status_t
mares_nemo_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
mares_nemo_device_t *device = (mares_nemo_device_t *) abstract;
if (size && size != sizeof (device->fingerprint))
return DC_STATUS_INVALIDARGS;
if (size)
memcpy (device->fingerprint, data, sizeof (device->fingerprint));
else
memset (device->fingerprint, 0, sizeof (device->fingerprint));
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_nemo_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
dc_status_t status = DC_STATUS_SUCCESS;
mares_nemo_device_t *device = (mares_nemo_device_t *) abstract;
// Erase the current contents of the buffer and
// pre-allocate the required amount of memory.
if (!dc_buffer_clear (buffer) || !dc_buffer_reserve (buffer, MEMORYSIZE)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
progress.maximum = MEMORYSIZE + 20;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
// Wait until some data arrives.
size_t available = 0;
while (dc_serial_get_available (device->port, &available) == DC_STATUS_SUCCESS && available == 0) {
if (device_is_cancelled (abstract))
return DC_STATUS_CANCELLED;
device_event_emit (abstract, DC_EVENT_WAITING, NULL);
dc_serial_sleep (device->port, 100);
}
// Receive the header of the package.
unsigned char header = 0x00;
for (unsigned int i = 0; i < 20;) {
status = dc_serial_read (device->port, &header, 1, NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the header.");
return status;
}
if (header == 0xEE) {
i++; // Continue.
} else {
i = 0; // Reset.
}
}
// Update and emit a progress event.
progress.current += 20;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
unsigned int nbytes = 0;
while (nbytes < MEMORYSIZE) {
// Read the packet.
unsigned char packet[(PACKETSIZE + 1) * 2] = {0};
status = dc_serial_read (device->port, packet, sizeof (packet), NULL);
if (status != DC_STATUS_SUCCESS) {
ERROR (abstract->context, "Failed to receive the answer.");
return status;
}
// Verify the checksums of the packet.
unsigned char crc1 = packet[PACKETSIZE];
unsigned char crc2 = packet[PACKETSIZE * 2 + 1];
unsigned char ccrc1 = checksum_add_uint8 (packet, PACKETSIZE, 0x00);
unsigned char ccrc2 = checksum_add_uint8 (packet + PACKETSIZE + 1, PACKETSIZE, 0x00);
if (crc1 == ccrc1 && crc2 == ccrc2) {
// Both packets have a correct checksum.
if (memcmp (packet, packet + PACKETSIZE + 1, PACKETSIZE) != 0) {
ERROR (abstract->context, "Both packets are not equal.");
return DC_STATUS_PROTOCOL;
}
dc_buffer_append (buffer, packet, PACKETSIZE);
} else if (crc1 == ccrc1) {
// Only the first packet has a correct checksum.
WARNING (abstract->context, "Only the first packet has a correct checksum.");
dc_buffer_append (buffer, packet, PACKETSIZE);
} else if (crc2 == ccrc2) {
// Only the second packet has a correct checksum.
WARNING (abstract->context, "Only the second packet has a correct checksum.");
dc_buffer_append (buffer, packet + PACKETSIZE + 1, PACKETSIZE);
} else {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
// Update and emit a progress event.
progress.current += PACKETSIZE;
device_event_emit (abstract, DC_EVENT_PROGRESS, &progress);
nbytes += PACKETSIZE;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
mares_nemo_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
mares_nemo_device_t *device = (mares_nemo_device_t *) abstract;
dc_buffer_t *buffer = dc_buffer_new (MEMORYSIZE);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = mares_nemo_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
// Emit a device info event.
unsigned char *data = dc_buffer_get_data (buffer);
dc_event_devinfo_t devinfo;
devinfo.model = data[1];
devinfo.firmware = 0;
devinfo.serial = array_uint16_be (data + 8);
device_event_emit (abstract, DC_EVENT_DEVINFO, &devinfo);
const mares_common_layout_t *layout = NULL;
switch (data[1]) {
case NEMO:
case NEMOEXCEL:
layout = &mares_nemo_layout;
break;
case NEMOAPNEIST:
layout = &mares_nemo_apneist_layout;
break;
default: // Unknown, try nemo
WARNING (abstract->context, "Unsupported model %02x detected!", data[1]);
layout = &mares_nemo_layout;
break;
}
rc = mares_common_extract_dives (abstract->context, layout, device->fingerprint, data, callback, userdata);
dc_buffer_free (buffer);
return rc;
}