libdc/src/atomics_cobalt_parser.c
Jef Driesen a34e909a84 Change the units for the sample time to milliseconds
Some dive computers, especially freediving computers, supports multiple
samples per second. Since our smallest unit of time is one second, we
can't represent this, and the extra samples are dropped. Therefore, the
units are changed to milliseconds to prepare supporting this extra
resolution.
2023-05-15 22:19:34 +02:00

354 lines
10 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2011 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <libdivecomputer/units.h>
#include "atomics_cobalt.h"
#include "context-private.h"
#include "parser-private.h"
#include "array.h"
#define ISINSTANCE(parser) dc_parser_isinstance((parser), &atomics_cobalt_parser_vtable)
#define SZ_HEADER 228
#define SZ_GASMIX 18
#define SZ_GASSWITCH 6
#define SZ_SEGMENT 16
typedef struct atomics_cobalt_parser_t atomics_cobalt_parser_t;
struct atomics_cobalt_parser_t {
dc_parser_t base;
// Depth calibration.
double hydrostatic;
};
static dc_status_t atomics_cobalt_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
static dc_status_t atomics_cobalt_parser_set_density (dc_parser_t *abstract, double density);
static dc_status_t atomics_cobalt_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
static dc_status_t atomics_cobalt_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
static dc_status_t atomics_cobalt_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
static const dc_parser_vtable_t atomics_cobalt_parser_vtable = {
sizeof(atomics_cobalt_parser_t),
DC_FAMILY_ATOMICS_COBALT,
atomics_cobalt_parser_set_data, /* set_data */
NULL, /* set_clock */
NULL, /* set_atmospheric */
atomics_cobalt_parser_set_density, /* set_density */
atomics_cobalt_parser_get_datetime, /* datetime */
atomics_cobalt_parser_get_field, /* fields */
atomics_cobalt_parser_samples_foreach, /* samples_foreach */
NULL /* destroy */
};
dc_status_t
atomics_cobalt_parser_create (dc_parser_t **out, dc_context_t *context)
{
atomics_cobalt_parser_t *parser = NULL;
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
parser = (atomics_cobalt_parser_t *) dc_parser_allocate (context, &atomics_cobalt_parser_vtable);
if (parser == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Set the default values.
parser->hydrostatic = DEF_DENSITY_SALT * GRAVITY;
*out = (dc_parser_t*) parser;
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
{
return DC_STATUS_SUCCESS;
}
dc_status_t
atomics_cobalt_parser_set_calibration (dc_parser_t *abstract, double atmospheric, double hydrostatic)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t*) abstract;
if (!ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
parser->hydrostatic = hydrostatic;
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_set_density (dc_parser_t *abstract, double density)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract;
parser->hydrostatic = density * GRAVITY;
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
{
if (abstract->size < SZ_HEADER)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
if (datetime) {
datetime->year = array_uint16_le (p + 0x14);
datetime->month = p[0x16];
datetime->day = p[0x17];
datetime->hour = p[0x18];
datetime->minute = p[0x19];
datetime->second = 0;
datetime->timezone = DC_TIMEZONE_NONE;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract;
if (abstract->size < SZ_HEADER)
return DC_STATUS_DATAFORMAT;
const unsigned char *p = abstract->data;
dc_gasmix_t *gasmix = (dc_gasmix_t *) value;
dc_tank_t *tank = (dc_tank_t *) value;
unsigned int atmospheric = array_uint16_le (p + 0x26);
unsigned int workpressure = 0;
if (value) {
switch (type) {
case DC_FIELD_DIVETIME:
*((unsigned int *) value) = array_uint16_le (p + 0x58) * 60;
break;
case DC_FIELD_MAXDEPTH:
*((double *) value) = (signed int)(array_uint16_le (p + 0x56) - atmospheric) * (BAR / 1000.0) / parser->hydrostatic;
break;
case DC_FIELD_GASMIX_COUNT:
case DC_FIELD_TANK_COUNT:
*((unsigned int *) value) = p[0x2a];
break;
case DC_FIELD_GASMIX:
gasmix->helium = p[SZ_HEADER + SZ_GASMIX * flags + 5] / 100.0;
gasmix->oxygen = p[SZ_HEADER + SZ_GASMIX * flags + 4] / 100.0;
gasmix->nitrogen = 1.0 - gasmix->oxygen - gasmix->helium;
break;
case DC_FIELD_TEMPERATURE_SURFACE:
*((double *) value) = (p[0x1B] - 32.0) * (5.0 / 9.0);
break;
case DC_FIELD_TANK:
p += SZ_HEADER + SZ_GASMIX * flags;
switch (p[2]) {
case 1: // Cuft at psi
case 2: // Cuft at bar
workpressure = array_uint16_le(p + 10);
if (workpressure == 0)
return DC_STATUS_DATAFORMAT;
tank->type = DC_TANKVOLUME_IMPERIAL;
tank->volume = array_uint16_le(p + 8) * CUFT * 1000.0;
tank->volume /= workpressure * PSI / ATM;
tank->workpressure = workpressure * PSI / BAR;
break;
case 3: // Wet volume in 1/10 liter
tank->type = DC_TANKVOLUME_METRIC;
tank->volume = array_uint16_le(p + 8) / 10.0;
tank->workpressure = 0.0;
break;
default:
return DC_STATUS_DATAFORMAT;
}
tank->gasmix = flags;
tank->beginpressure = array_uint16_le(p + 6) * PSI / BAR;
tank->endpressure = array_uint16_le(p + 14) * PSI / BAR;
break;
case DC_FIELD_DIVEMODE:
switch(p[0x24]) {
case 0: // Open Circuit Trimix
case 2: // Open Circuit Nitrox
*((dc_divemode_t *) value) = DC_DIVEMODE_OC;
break;
case 1: // Closed Circuit
*((dc_divemode_t *) value) = DC_DIVEMODE_CCR;
break;
default:
return DC_STATUS_DATAFORMAT;
}
break;
case DC_FIELD_ATMOSPHERIC:
*((double *) value) = atmospheric / 1000.0;
break;
default:
return DC_STATUS_UNSUPPORTED;
}
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
atomics_cobalt_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
{
atomics_cobalt_parser_t *parser = (atomics_cobalt_parser_t *) abstract;
const unsigned char *data = abstract->data;
unsigned int size = abstract->size;
if (size < SZ_HEADER)
return DC_STATUS_DATAFORMAT;
unsigned int interval = data[0x1a];
unsigned int ngasmixes = data[0x2a];
unsigned int nswitches = data[0x2b];
unsigned int nsegments = array_uint16_le (data + 0x50);
unsigned int header = SZ_HEADER + SZ_GASMIX * ngasmixes +
SZ_GASSWITCH * nswitches;
if (size < header + SZ_SEGMENT * nsegments)
return DC_STATUS_DATAFORMAT;
unsigned int atmospheric = array_uint16_le (data + 0x26);
// Previous gas mix - initialize with impossible value
unsigned int gasmix_previous = 0xFFFFFFFF;
// Get the primary tank.
unsigned int tank = 0;
while (tank < ngasmixes) {
unsigned int sensor = array_uint16_le(data + SZ_HEADER + SZ_GASMIX * tank + 12);
if (sensor == 1)
break;
tank++;
}
if (tank >= ngasmixes) {
ERROR (abstract->context, "Invalid primary tank index.");
return DC_STATUS_DATAFORMAT;
}
unsigned int time = 0;
unsigned int in_deco = 0;
unsigned int offset = header;
while (offset + SZ_SEGMENT <= size) {
dc_sample_value_t sample = {0};
// Time (seconds).
time += interval;
sample.time = time * 1000;
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
// Depth (1/1000 bar).
unsigned int depth = array_uint16_le (data + offset + 0);
sample.depth = (signed int)(depth - atmospheric) * (BAR / 1000.0) / parser->hydrostatic;
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
// Pressure (1 psi).
unsigned int pressure = array_uint16_le (data + offset + 2);
sample.pressure.tank = tank;
sample.pressure.value = pressure * PSI / BAR;
if (callback) callback (DC_SAMPLE_PRESSURE, sample, userdata);
// Current gas mix
unsigned int gasmix = data[offset + 4];
if (gasmix != gasmix_previous) {
unsigned int idx = 0;
while (idx < ngasmixes) {
if (data[SZ_HEADER + SZ_GASMIX * idx + 0] == gasmix)
break;
idx++;
}
if (idx >= ngasmixes) {
ERROR (abstract->context, "Invalid gas mix index.");
return DC_STATUS_DATAFORMAT;
}
sample.gasmix = idx;
if (callback) callback (DC_SAMPLE_GASMIX, sample, userdata);
gasmix_previous = gasmix;
}
// Temperature (1 °F).
unsigned int temperature = data[offset + 8];
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
// violation status
sample.event.type = 0;
sample.event.time = 0;
sample.event.value = 0;
sample.event.flags = 0;
unsigned int violation = data[offset + 11];
if (violation & 0x01) {
sample.event.type = SAMPLE_EVENT_ASCENT;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
if (violation & 0x04) {
sample.event.type = SAMPLE_EVENT_CEILING;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
if (violation & 0x08) {
sample.event.type = SAMPLE_EVENT_PO2;
if (callback) callback (DC_SAMPLE_EVENT, sample, userdata);
}
// NDL & deco
unsigned int ndl = data[offset + 5] * 60;
if (ndl > 0)
in_deco = 0;
else if (ndl == 0 && (violation & 0x02))
in_deco = 1;
if (in_deco)
sample.deco.type = DC_DECO_DECOSTOP;
else
sample.deco.type = DC_DECO_NDL;
sample.deco.time = ndl;
sample.deco.depth = 0.0;
if (callback) callback (DC_SAMPLE_DECO, sample, userdata);
offset += SZ_SEGMENT;
}
return DC_STATUS_SUCCESS;
}