libdc/src/uwatec_meridian.c
Jef Driesen c524986175 Add support for the Scubapro/Uwatec Meridian.
The Uwatec Meridian protocol is identical to the Uwatec Smart/Galileo
protocol, except for some additional framing around each data packet,
and the switch from IrDA to usb-serial communication. For parsing, the
data format appears to be identical to the Galileo data format.
2013-10-19 10:11:15 +02:00

499 lines
14 KiB
C

/*
* libdivecomputer
*
* Copyright (C) 2013 Jef Driesen
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <libdivecomputer/uwatec_meridian.h>
#include "context-private.h"
#include "device-private.h"
#include "checksum.h"
#include "serial.h"
#include "array.h"
#define ISINSTANCE(device) dc_device_isinstance((device), &uwatec_meridian_device_vtable)
#define EXITCODE(rc) \
( \
rc == -1 ? DC_STATUS_IO : DC_STATUS_TIMEOUT \
)
#define ACK 0x11
#define NAK 0x66
typedef struct uwatec_meridian_device_t {
dc_device_t base;
serial_t *port;
unsigned int timestamp;
unsigned int devtime;
dc_ticks_t systime;
} uwatec_meridian_device_t;
static dc_status_t uwatec_meridian_device_set_fingerprint (dc_device_t *device, const unsigned char data[], unsigned int size);
static dc_status_t uwatec_meridian_device_dump (dc_device_t *abstract, dc_buffer_t *buffer);
static dc_status_t uwatec_meridian_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata);
static dc_status_t uwatec_meridian_device_close (dc_device_t *abstract);
static const dc_device_vtable_t uwatec_meridian_device_vtable = {
DC_FAMILY_UWATEC_MERIDIAN,
uwatec_meridian_device_set_fingerprint, /* set_fingerprint */
NULL, /* read */
NULL, /* write */
uwatec_meridian_device_dump, /* dump */
uwatec_meridian_device_foreach, /* foreach */
uwatec_meridian_device_close /* close */
};
static dc_status_t
uwatec_meridian_transfer (uwatec_meridian_device_t *device, const unsigned char command[], unsigned int csize, unsigned char answer[], unsigned int asize)
{
dc_device_t *abstract = (dc_device_t *) device;
assert (csize > 0 && csize <= 255);
// Build the packet.
unsigned char packet[255 + 12] = {
0xFF, 0xFF, 0xFF,
0xA6, 0x59, 0xBD, 0xC2,
0x00, /* length */
0x00, 0x00, 0x00,
0x00}; /* data and checksum */
memcpy (packet + 11, command, csize);
packet[7] = csize;
packet[11 + csize] = checksum_xor_uint8 (packet + 7, csize + 4, 0x00);
// Send the packet.
int n = serial_write (device->port, packet, csize + 12);
if (n != csize + 12) {
ERROR (abstract->context, "Failed to send the command.");
return EXITCODE (n);
}
// Read the echo.
unsigned char echo[sizeof(packet)];
n = serial_read (device->port, echo, csize + 12);
if (n != csize + 12) {
ERROR (abstract->context, "Failed to receive the echo.");
return EXITCODE (n);
}
// Verify the echo.
if (memcmp (echo, packet, csize + 12) != 0) {
WARNING (abstract->context, "Unexpected echo.");
return DC_STATUS_PROTOCOL;
}
// Read the header.
unsigned char header[6];
n = serial_read (device->port, header, sizeof (header));
if (n != sizeof (header)) {
ERROR (abstract->context, "Failed to receive the header.");
return EXITCODE (n);
}
// Verify the header.
if (header[0] != ACK || array_uint32_le (header + 1) != asize + 1 || header[5] != packet[11]) {
WARNING (abstract->context, "Unexpected header.");
return DC_STATUS_PROTOCOL;
}
// Read the packet.
n = serial_read (device->port, answer, asize);
if (n != asize) {
ERROR (abstract->context, "Failed to receive the packet.");
return EXITCODE (n);
}
// Read the checksum.
unsigned char csum = 0x00;
n = serial_read (device->port, &csum, sizeof (csum));
if (n != sizeof (csum)) {
ERROR (abstract->context, "Failed to receive the checksum.");
return EXITCODE (n);
}
// Verify the checksum.
unsigned char ccsum = 0x00;
ccsum = checksum_xor_uint8 (header + 1, sizeof (header) - 1, ccsum);
ccsum = checksum_xor_uint8 (answer, asize, ccsum);
if (csum != ccsum) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_meridian_handshake (uwatec_meridian_device_t *device)
{
dc_device_t *abstract = (dc_device_t *) device;
// Command template.
unsigned char answer[1] = {0};
unsigned char command[5] = {0x00, 0x10, 0x27, 0, 0};
// Handshake (stage 1).
command[0] = 0x1B;
dc_status_t rc = uwatec_meridian_transfer (device, command, 1, answer, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the answer.
if (answer[0] != 0x01) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
// Handshake (stage 2).
command[0] = 0x1C;
rc = uwatec_meridian_transfer (device, command, 5, answer, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
// Verify the answer.
if (answer[0] != 0x01) {
ERROR (abstract->context, "Unexpected answer byte(s).");
return DC_STATUS_PROTOCOL;
}
return DC_STATUS_SUCCESS;
}
dc_status_t
uwatec_meridian_device_open (dc_device_t **out, dc_context_t *context, const char *name)
{
if (out == NULL)
return DC_STATUS_INVALIDARGS;
// Allocate memory.
uwatec_meridian_device_t *device = (uwatec_meridian_device_t *) malloc (sizeof (uwatec_meridian_device_t));
if (device == NULL) {
ERROR (context, "Failed to allocate memory.");
return DC_STATUS_NOMEMORY;
}
// Initialize the base class.
device_init (&device->base, context, &uwatec_meridian_device_vtable);
// Set the default values.
device->port = NULL;
device->timestamp = 0;
device->systime = (dc_ticks_t) -1;
device->devtime = 0;
// Open the device.
int rc = serial_open (&device->port, context, name);
if (rc == -1) {
ERROR (context, "Failed to open the serial port.");
free (device);
return DC_STATUS_IO;
}
// Set the serial communication protocol (57600 8N1).
rc = serial_configure (device->port, 57600, 8, SERIAL_PARITY_NONE, 1, SERIAL_FLOWCONTROL_NONE);
if (rc == -1) {
ERROR (context, "Failed to set the terminal attributes.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Set the timeout for receiving data (3000ms).
if (serial_set_timeout (device->port, 3000) == -1) {
ERROR (context, "Failed to set the timeout.");
serial_close (device->port);
free (device);
return DC_STATUS_IO;
}
// Make sure everything is in a sane state.
serial_flush (device->port, SERIAL_QUEUE_BOTH);
// Perform the handshaking.
uwatec_meridian_handshake (device);
*out = (dc_device_t*) device;
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_meridian_device_close (dc_device_t *abstract)
{
uwatec_meridian_device_t *device = (uwatec_meridian_device_t*) abstract;
// Close the device.
if (serial_close (device->port) == -1) {
free (device);
return DC_STATUS_IO;
}
// Free memory.
free (device);
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_meridian_device_set_fingerprint (dc_device_t *abstract, const unsigned char data[], unsigned int size)
{
uwatec_meridian_device_t *device = (uwatec_meridian_device_t*) abstract;
if (size && size != 4)
return DC_STATUS_INVALIDARGS;
if (size)
device->timestamp = array_uint32_le (data);
else
device->timestamp = 0;
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_meridian_device_dump (dc_device_t *abstract, dc_buffer_t *buffer)
{
uwatec_meridian_device_t *device = (uwatec_meridian_device_t*) abstract;
dc_status_t rc = DC_STATUS_SUCCESS;
// Erase the current contents of the buffer.
if (!dc_buffer_clear (buffer)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
// Enable progress notifications.
dc_event_progress_t progress = EVENT_PROGRESS_INITIALIZER;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
// Command template.
unsigned char command[9] = {0x00,
(device->timestamp ) & 0xFF,
(device->timestamp >> 8 ) & 0xFF,
(device->timestamp >> 16) & 0xFF,
(device->timestamp >> 24) & 0xFF,
0x10,
0x27,
0,
0};
// Read the model number.
command[0] = 0x10;
unsigned char model[1] = {0};
rc = uwatec_meridian_transfer (device, command, 1, model, sizeof (model));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the serial number.
command[0] = 0x14;
unsigned char serial[4] = {0};
rc = uwatec_meridian_transfer (device, command, 1, serial, sizeof (serial));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Read the device clock.
command[0] = 0x1A;
unsigned char devtime[4] = {0};
rc = uwatec_meridian_transfer (device, command, 1, devtime, sizeof (devtime));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Store the clock calibration values.
device->systime = dc_datetime_now ();
device->devtime = array_uint32_le (devtime);
// Update and emit a progress event.
progress.current += 9;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
// Emit a clock event.
dc_event_clock_t clock;
clock.systime = device->systime;
clock.devtime = device->devtime;
device_event_emit (&device->base, DC_EVENT_CLOCK, &clock);
// Emit a device info event.
dc_event_devinfo_t devinfo;
devinfo.model = model[0];
devinfo.firmware = 0;
devinfo.serial = array_uint32_le (serial);
device_event_emit (&device->base, DC_EVENT_DEVINFO, &devinfo);
// Data Length.
command[0] = 0xC6;
unsigned char answer[4] = {0};
rc = uwatec_meridian_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int length = array_uint32_le (answer);
// Update and emit a progress event.
progress.maximum = 4 + 9 + (length ? length + 4 : 0);
progress.current += 4;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
if (length == 0)
return DC_STATUS_SUCCESS;
// Allocate the required amount of memory.
if (!dc_buffer_resize (buffer, length)) {
ERROR (abstract->context, "Insufficient buffer space available.");
return DC_STATUS_NOMEMORY;
}
unsigned char *data = dc_buffer_get_data (buffer);
// Data.
command[0] = 0xC4;
rc = uwatec_meridian_transfer (device, command, sizeof (command), answer, sizeof (answer));
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned int total = array_uint32_le (answer);
// Update and emit a progress event.
progress.current += 4;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
if (total != length + 4) {
ERROR (abstract->context, "Received an unexpected size.");
return DC_STATUS_PROTOCOL;
}
unsigned int nbytes = 0;
while (nbytes < length) {
// Read the header.
unsigned char header[5];
int n = serial_read (device->port, header, sizeof (header));
if (n != sizeof (header)) {
ERROR (abstract->context, "Failed to receive the header.");
return EXITCODE (n);
}
// Get the packet size.
unsigned int packetsize = array_uint32_le (header);
if (packetsize < 1 || nbytes + packetsize - 1 > length) {
WARNING (abstract->context, "Unexpected header.");
return DC_STATUS_PROTOCOL;
}
// Read the packet data.
n = serial_read (device->port, data + nbytes, packetsize - 1);
if (n != packetsize - 1) {
ERROR (abstract->context, "Failed to receive the packet.");
return EXITCODE (n);
}
// Read the checksum.
unsigned char csum = 0x00;
n = serial_read (device->port, &csum, sizeof (csum));
if (n != sizeof (csum)) {
ERROR (abstract->context, "Failed to receive the checksum.");
return EXITCODE (n);
}
// Verify the checksum.
unsigned char ccsum = 0x00;
ccsum = checksum_xor_uint8 (header, sizeof (header), ccsum);
ccsum = checksum_xor_uint8 (data + nbytes, packetsize - 1, ccsum);
if (csum != ccsum) {
ERROR (abstract->context, "Unexpected answer checksum.");
return DC_STATUS_PROTOCOL;
}
// Update and emit a progress event.
progress.current += packetsize - 1;
device_event_emit (&device->base, DC_EVENT_PROGRESS, &progress);
nbytes += packetsize - 1;
}
return DC_STATUS_SUCCESS;
}
static dc_status_t
uwatec_meridian_device_foreach (dc_device_t *abstract, dc_dive_callback_t callback, void *userdata)
{
dc_buffer_t *buffer = dc_buffer_new (0);
if (buffer == NULL)
return DC_STATUS_NOMEMORY;
dc_status_t rc = uwatec_meridian_device_dump (abstract, buffer);
if (rc != DC_STATUS_SUCCESS) {
dc_buffer_free (buffer);
return rc;
}
rc = uwatec_meridian_extract_dives (abstract,
dc_buffer_get_data (buffer), dc_buffer_get_size (buffer), callback, userdata);
dc_buffer_free (buffer);
return rc;
}
dc_status_t
uwatec_meridian_extract_dives (dc_device_t *abstract, const unsigned char data[], unsigned int size, dc_dive_callback_t callback, void *userdata)
{
if (abstract && !ISINSTANCE (abstract))
return DC_STATUS_INVALIDARGS;
const unsigned char header[4] = {0xa5, 0xa5, 0x5a, 0x5a};
// Search the data stream for start markers.
unsigned int previous = size;
unsigned int current = (size >= 4 ? size - 4 : 0);
while (current > 0) {
current--;
if (memcmp (data + current, header, sizeof (header)) == 0) {
// Get the length of the profile data.
unsigned int len = array_uint32_le (data + current + 4);
// Check for a buffer overflow.
if (current + len > previous)
return DC_STATUS_DATAFORMAT;
if (callback && !callback (data + current, len, data + current + 8, 4, userdata))
return DC_STATUS_SUCCESS;
// Prepare for the next dive.
previous = current;
current = (current >= 4 ? current - 4 : 0);
}
}
return DC_STATUS_SUCCESS;
}