Allthough most dive computers always use local time and don't support timezones at all, there are a few exceptions. There are two different sources of timezone information: - Some of the newer Uwatec/Scubapro devices use UTC internally and also support a timezone setting. This UTC offset is currently taken into account to obtain the dive date/time, but the UTC offset itself is lost. - Uwatec/Scubapro and Reefnet devices rely on the clock of the host system to synchronize the internal device clock and calculate the dive date/time. The consequence is that the resulting date/time is always in the timezone of the host system. In order to preserve this timezone information, the dc_datetime_t structure is extended with a new "timezone" field, containing the UTC offset in seconds. Devices without timezone support will set the field to the special value DC_TIMEZONE_NONE. The dc_datetime_localtime() and dc_datetime_gmtime() functions will automatically populate the new field with respectively the local timezone offset and zero. The dc_datetime_mktime() function will take into account the new timezone field for the conversion to UTC. The special value DC_TIMEZONE_NONE is interpreted as zero.
269 lines
7.5 KiB
C
269 lines
7.5 KiB
C
/*
|
|
* libdivecomputer
|
|
*
|
|
* Copyright (C) 2014 Jef Driesen
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
|
* MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <libdivecomputer/units.h>
|
|
|
|
#include "citizen_aqualand.h"
|
|
#include "context-private.h"
|
|
#include "parser-private.h"
|
|
#include "array.h"
|
|
|
|
#define ISINSTANCE(parser) dc_device_isinstance((parser), &citizen_aqualand_parser_vtable)
|
|
|
|
#define SZ_HEADER 32
|
|
|
|
typedef struct citizen_aqualand_parser_t {
|
|
dc_parser_t base;
|
|
} citizen_aqualand_parser_t;
|
|
|
|
static dc_status_t citizen_aqualand_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size);
|
|
static dc_status_t citizen_aqualand_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime);
|
|
static dc_status_t citizen_aqualand_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value);
|
|
static dc_status_t citizen_aqualand_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata);
|
|
|
|
static const dc_parser_vtable_t citizen_aqualand_parser_vtable = {
|
|
sizeof(citizen_aqualand_parser_t),
|
|
DC_FAMILY_CITIZEN_AQUALAND,
|
|
citizen_aqualand_parser_set_data, /* set_data */
|
|
citizen_aqualand_parser_get_datetime, /* datetime */
|
|
citizen_aqualand_parser_get_field, /* fields */
|
|
citizen_aqualand_parser_samples_foreach, /* samples_foreach */
|
|
NULL /* destroy */
|
|
};
|
|
|
|
|
|
dc_status_t
|
|
citizen_aqualand_parser_create (dc_parser_t **out, dc_context_t *context)
|
|
{
|
|
citizen_aqualand_parser_t *parser = NULL;
|
|
|
|
if (out == NULL)
|
|
return DC_STATUS_INVALIDARGS;
|
|
|
|
// Allocate memory.
|
|
parser = (citizen_aqualand_parser_t *) dc_parser_allocate (context, &citizen_aqualand_parser_vtable);
|
|
if (parser == NULL) {
|
|
ERROR (context, "Failed to allocate memory.");
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
*out = (dc_parser_t*) parser;
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_set_data (dc_parser_t *abstract, const unsigned char *data, unsigned int size)
|
|
{
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_get_datetime (dc_parser_t *abstract, dc_datetime_t *datetime)
|
|
{
|
|
if (abstract->size < SZ_HEADER)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
const unsigned char *p = abstract->data;
|
|
|
|
if (datetime) {
|
|
datetime->year = bcd2dec(p[0x05]) * 100 + bcd2dec(p[0x06]);
|
|
datetime->month = bcd2dec(p[0x07]);
|
|
datetime->day = bcd2dec(p[0x08]);
|
|
datetime->hour = bcd2dec(p[0x0A]);
|
|
datetime->minute = bcd2dec(p[0x0B]);
|
|
datetime->second = bcd2dec(p[0x0C]);
|
|
datetime->timezone = DC_TIMEZONE_NONE;
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_get_field (dc_parser_t *abstract, dc_field_type_t type, unsigned int flags, void *value)
|
|
{
|
|
if (abstract->size < SZ_HEADER)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
const unsigned char *data = abstract->data;
|
|
|
|
unsigned int metric = (data[0x04] == 0xA6 ? 0 : 1);
|
|
unsigned int maxdepth = bcd2dec(data[0x12]) * 10 + ((data[0x13] >> 4) & 0x0F);
|
|
unsigned int divetime = (data[0x16] & 0x0F) * 100 + bcd2dec(data[0x17]);
|
|
|
|
if (value) {
|
|
switch (type) {
|
|
case DC_FIELD_DIVETIME:
|
|
*((unsigned int *) value) = divetime * 60;
|
|
break;
|
|
case DC_FIELD_MAXDEPTH:
|
|
if (metric)
|
|
*((double *) value) = maxdepth / 10.0;
|
|
else
|
|
*((double *) value) = maxdepth * FEET;
|
|
break;
|
|
case DC_FIELD_GASMIX_COUNT:
|
|
*((unsigned int *) value) = 0;
|
|
break;
|
|
case DC_FIELD_DIVEMODE:
|
|
*((dc_divemode_t *) value) = DC_DIVEMODE_GAUGE;
|
|
break;
|
|
default:
|
|
return DC_STATUS_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|
|
|
|
static dc_status_t
|
|
citizen_aqualand_parser_samples_foreach (dc_parser_t *abstract, dc_sample_callback_t callback, void *userdata)
|
|
{
|
|
const unsigned char *data = abstract->data;
|
|
unsigned int size = abstract->size;
|
|
|
|
if (size < SZ_HEADER)
|
|
return DC_STATUS_DATAFORMAT;
|
|
|
|
// Estimate the maximum number of samples. We calculate the number of
|
|
// 12 bit values that fit in the available profile data, and round the
|
|
// result upwards. The actual number of samples should always be smaller
|
|
// due to the presence of at least two end markers.
|
|
unsigned int maxcount = (2 * (size - SZ_HEADER) + 2) / 3;
|
|
|
|
// Allocate storage for the processed 16 bit samples.
|
|
unsigned short *samples = (unsigned short *) malloc(maxcount * sizeof(unsigned short));
|
|
if (samples == NULL) {
|
|
return DC_STATUS_NOMEMORY;
|
|
}
|
|
|
|
// Pre-process the depth and temperature tables. The 12 bit BCD encoded
|
|
// values are converted into an array of 16 bit values, which is much
|
|
// more convenient to process in the second stage.
|
|
unsigned int nsamples = 0;
|
|
unsigned int count[2] = {0, 0};
|
|
unsigned int offset = SZ_HEADER * 2;
|
|
unsigned int length = size * 2;
|
|
for (unsigned int i = 0; i < 2; ++i) {
|
|
const unsigned int marker = (i == 0 ? 0xEF : 0xFF);
|
|
|
|
while (offset + 3 <= length) {
|
|
unsigned int value = 0;
|
|
unsigned int octet = offset / 2;
|
|
unsigned int nibble = offset % 2;
|
|
unsigned int hi = data[octet];
|
|
unsigned int lo = data[octet + 1];
|
|
|
|
// Check for the end marker.
|
|
if (hi == marker || lo == marker) {
|
|
offset += nibble;
|
|
break;
|
|
}
|
|
|
|
// Convert 12 bit BCD to decimal.
|
|
if (nibble) {
|
|
value = ((hi ) & 0x0F) * 100 +
|
|
((lo >> 4) & 0x0F) * 10 +
|
|
((lo ) & 0x0F);
|
|
} else {
|
|
value = ((hi >> 4) & 0x0F) * 100 +
|
|
((hi ) & 0x0F) * 10 +
|
|
((lo >> 4) & 0x0F);
|
|
}
|
|
|
|
// Store the value.
|
|
samples[nsamples] = value;
|
|
count[i]++;
|
|
nsamples++;
|
|
|
|
offset += 3;
|
|
}
|
|
|
|
// Verify the end marker.
|
|
if (offset + 2 > length || data[offset / 2] != marker) {
|
|
ERROR (abstract->context, "No end marker found.");
|
|
free(samples);
|
|
return DC_STATUS_DATAFORMAT;
|
|
}
|
|
|
|
offset += 2;
|
|
}
|
|
|
|
unsigned int time = 0;
|
|
unsigned int interval = 5;
|
|
unsigned int metric = (data[0x04] == 0xA6 ? 0 : 1);
|
|
for (unsigned int i = 0; i < count[0]; ++i) {
|
|
dc_sample_value_t sample = {0};
|
|
|
|
// Get the depth value.
|
|
unsigned int depth = samples[i];
|
|
|
|
// Every 12th sample there is a strange sample that always contains
|
|
// the value 999. This is clearly not a valid depth, but when trying
|
|
// to skip these samples, the depth and temperatures go out of sync.
|
|
// Therefore we replace the bogus sample with an interpolated value.
|
|
if (depth == 999) {
|
|
depth = 0;
|
|
if (i > 0) {
|
|
depth += samples[i - 1];
|
|
}
|
|
if (i < count[0] - 1) {
|
|
depth += samples[i + 1];
|
|
}
|
|
depth /= 2;
|
|
}
|
|
|
|
// Time
|
|
time += interval;
|
|
sample.time = time;
|
|
if (callback) callback (DC_SAMPLE_TIME, sample, userdata);
|
|
|
|
// Depth
|
|
if (metric)
|
|
sample.depth = depth / 10.0;
|
|
else
|
|
sample.depth = depth * FEET;
|
|
if (callback) callback (DC_SAMPLE_DEPTH, sample, userdata);
|
|
|
|
// Temperature
|
|
if (time % 300 == 0) {
|
|
unsigned int idx = count[0] + time / 300;
|
|
if (idx < nsamples) {
|
|
unsigned int temperature = samples[idx];
|
|
if (metric)
|
|
sample.temperature = temperature / 10.0;
|
|
else
|
|
sample.temperature = (temperature - 32.0) * (5.0 / 9.0);
|
|
if (callback) callback (DC_SAMPLE_TEMPERATURE, sample, userdata);
|
|
}
|
|
}
|
|
}
|
|
|
|
free(samples);
|
|
|
|
return DC_STATUS_SUCCESS;
|
|
}
|